[1]
|
陆诗建, 黄凤敏, 李清方, 等. 燃烧后co2捕集技术与工程进展[j]. 现代化工, 2015, 35(6): 48-52.
|
[2]
|
晏水平, 方梦祥, 张卫风, 等. 烟气中co2化学吸收法脱除技术分析与进展[j]. 化工进展, 2006, 25(9): 1018-1025.
|
[3]
|
平甜甜, 尹鑫, 董玉, 等. 有机胺非水溶液吸收co2的动力学研究进展[j]. 化工学报, 2021, 72(8): 3968-3983.
|
[4]
|
chu, f., yang, l., du, x. and yang, y. (2016) co2 capture using mea (monoethanolamine) aqueous solution in coal-fired power plants: modeling and optimization of the absorbing columns. energy, 109, 495-505.
|
[5]
|
郑园园. n-甲基二乙醇胺吸收co2的热力学模型研究[j]. 气体净化, 2015, 15(3): 23-27.
|
[6]
|
bishnoi, s. and rochelle, g.t. (2000) absorption of carbon dioxide into aqueous piperazine: reaction kinetics, mass transfer and solubility. chemical engineering science, 55, 5531-5543.
|
[7]
|
svensson, h., hulteberg, c. and karlsson, h.t. (2013) heat of absorption of co2 in aqueous solutions of n-methyldiethanolamine and piperazine. international journal of greenhouse gas control, 17, 89-98.
|
[8]
|
bishnoi, s. and rochelle, g.t. (2002) absorption of carbon dioxide in aqueous piperazine/methyldiethanolamine. aiche journal, 48, 2788-2799.
|
[9]
|
mangalapally, h.p. and hasse, h. (2011) pilot plant study of two new solvents for post combustion carbon dioxide capture by reactive absorption and comparison to monoethanolamine. chemical engineering science, 66, 5512-5522.
|
[10]
|
kadiwala, s., rayer, a.v. and henni, a. (2012) kinetics of carbon dioxide (co2) with ethylenediamine, 3-amino-1-propanol in methanol and ethanol, and with 1-dimethylamino-2-propanol and 3-dimethylamino-1-propanol in water using stopped-flow technique. chemical engineering journal, 179, 262-271.
|
[11]
|
liang, y., liu, h., rongwong, w., liang, z., idem, r. and tontiwachwuthikul, p. (2015) solubility, absorption heat and mass transfer studies of co2 absorption into aqueous solution of 1-dimethylamino-2-propanol. fuel, 144, 121-129.
|
[12]
|
zhou, x., jing, g., lv, b., liu, f. and zhou, z. (2019) low-viscosity and efficient regeneration of carbon dioxide capture using a biphasic solvent regulated by 2-amino-2-methyl-1-propanol. applied energy, 235, 379-390.
|
[13]
|
陈东良, 张忠林, 杨景轩, 等. 基于自热再生的化学吸收法co2捕集工艺模拟及节能分析[j]. 化工学报, 2019, 70(8): 2938-2945.
|
[14]
|
plaza, j.m., van wagener, d. and rochelle, g.t. (2010) modeling co2 capture with aqueous monoethanolamine. international journal of greenhouse gas control, 4, 161-166.
|
[15]
|
li, k., cousins, a., yu, h., feron, p., tade, m., luo, w., et al. (2015) systematic study of aqueous monoethanolamine‐based co2 capture process: model development and process improvement. energy science & engineering, 4, 23-39.
|
[16]
|
baburao, b. and schuber, c. (2013) advanced intercooling and recycling in co2 absorption: us2011/0168020.
|
[17]
|
marafi, m., stanislaus, a. and furimsky, e. (2017) handbook of spent hydroprocessing catalysts. elsevier.
|
[18]
|
jin, h., liu, p. and li, z. (2021) impact of solvent properties on post-combustion carbon capture processes: a vapor-liquid equilibrium modelling approach. chemical engineering science: x, 10, article 100095.
|
[19]
|
李小飞, 王淑娟, 陈昌和. 胺法脱碳系统流程改进及优化模拟[j]. 化工学报, 2013, 64(10): 3750-3759.
|
[20]
|
zhao, b., liu, f., cui, z., liu, c., yue, h., tang, s., et al. (2017) enhancing the energetic efficiency of mdea/pz-based co2 capture technology for a 650 mw power plant: process improvement. applied energy, 185, 362-375.
|
[21]
|
jassim, m.s. and rochelle, g.t. (2005) innovative absorber/stripper configurations for co2 capture by aqueous monoethanolamine. industrial & engineering chemistry research, 45, 2465-2472.
|
[22]
|
ahn, h., luberti, m., liu, z. and brandani, s. (2013) process configuration studies of the amine capture process for coal-fired power plants. international journal of greenhouse gas control, 16, 29-40.
|
[23]
|
xue, b., yu, y., chen, j., luo, x. and wang, m. (2016) a comparative study of mea and dea for post-combustion co2 capture with different process configurations. international journal of coal science & technology, 4, 15-24.
|
[24]
|
wang, d., li, j., meng, w., wang, j., wang, k., zhou, h., et al. (2022) integrated process for producing glycolic acid from carbon dioxide capture coupling green hydrogen. processes, 10, article 1610.
|
[25]
|
lv, b., zhou, x., zhou, z. and jing, g. (2019) kinetics and thermodynamics of co2 absorption into a novel deta-amp-pmdeta biphasic solvent. acs sustainable chemistry & engineering, 7, 13400-13410.
|
[26]
|
liu, f., fang, m., dong, w., wang, t., xia, z., wang, q., et al. (2019) carbon dioxide absorption in aqueous alkanolamine blends for biphasic solvents screening and evaluation. applied energy, 233, 468-477.
|
[27]
|
wang, r., liu, s., wang, l., li, q., zhang, s., chen, b., et al. (2019) superior energy-saving splitter in monoethanolamine-based biphasic solvents for co2 capture from coal-fired flue gas. applied energy, 242, 302-310.
|
[28]
|
wang, l., yu, s., li, q., zhang, y., an, s. and zhang, s. (2018) performance of sulfolane/deta hybrids for co2 absorption: phase splitting behavior, kinetics and thermodynamics. applied energy, 228, 568-576.
|
[29]
|
ye, j., jiang, c., chen, h., shen, y., zhang, s., wang, l., et al. (2019) novel biphasic solvent with tunable phase separation for co2 capture: role of water content in mechanism, kinetics, and energy penalty. environmental science & technology, 53, 4470-4479.
|
[30]
|
wang, l., zhang, y., wang, r., li, q., zhang, s., li, m., et al. (2018) advanced monoethanolamine absorption using sulfolane as a phase splitter for co2 capture. environmental science & technology, 52, 14556-14563.
|
[31]
|
zhang, j., qiao, y. and agar, d.w. (2012) intensification of low temperature thermomorphic biphasic amine solvent regeneration for co2 capture. chemical engineering research and design, 90, 743-749.
|
[32]
|
raynal, l., alix, p., bouillon, p., gomez, a., de nailly, m.f., jacquin, m., et al. (2011) the dmx™ process: an original solution for lowering the cost of post-combustion carbon capture. energy procedia, 4, 779-786.
|