内质网应激在溃疡性结肠炎中作用机制的研究进展-凯发国际一触即发

内质网应激在溃疡性结肠炎中作用机制的研究进展
research progress on the mechanism of endoplasmic reticulum stress in ulcerative colitis
doi: , , , ,    科研立项经费支持
作者: , 朱飞叶*:浙江中医药大学中医药科学院,浙江 杭州
关键词: ;;;;; research progress
摘要: 内质网应激是细胞的重要防御机制,最大限度地对抗内外源性的应激,应激可激活下游信号使得蛋白折叠功能恢复或细胞死亡,持续高强度的内质网应激则会触发程序性细胞死亡或者是凋亡。在溃疡性结肠炎的发生发展中内质网应激发挥了重要作用。现对内质网应激在溃疡性结肠炎中的研究进展进行综述,为溃疡性结肠炎的治疗提供新思路。
abstract: endoplasmic reticulum stress is an important defense mechanism of cells, which can maximize the resistance to internal and external stress. stress can activate downstream signals to restore protein folding function or cell death, and sustained high intensity endoplasmic reticulum stress can trigger programmed cell death or apoptosis. endoplasmic reticulum stress plays an important role in the occurrence and development of ulcerative colitis. this article reviews the research progress of endoplasmic reticulum stress in ulcerative colitis, and provides a new idea for the treatment of ulcerative colitis.
文章引用:陈小辉, 朱飞叶. 内质网应激在溃疡性结肠炎中作用机制的研究进展[j]. 生物医学, 2024, 14(4): 637-644.

1. 引言

溃疡性结肠炎(ulcerative colitis, uc)是炎症性肠病(inflammatory bowel disease, ibd)的一种,其特点是非特异性的肠道炎症,同时是一种慢性疾病,其发病机制尚未完全清楚,表现为肠炎和上皮损伤,且容易反复发作。根据报道显示,炎症性肠病发病率在全世界范围内不断增加。主要的患病因素可能是来源于遗传、环境、免疫反应等方面 。同时现在的患病率也越来越高。目前uc治疗的主要方法包括5-氨基水杨酸、糖皮质激素及免疫抑制剂等多个方面,尽管治疗方法有多种,但还是主要针对病因进行治疗,仍有相当比例的患者未达到理想的治疗目标。越来越高的发病率和治疗的难点问题使得研究其病因和发病机制成为关键,寻求最佳的治疗方法成为迫切需求。随着医学的发展,越来越多的生物和小分子治疗成为可能,内质网应激(endoplasmic reticulumstress, ers)介导的溃疡性结肠炎及肠黏膜免疫在其发病机制中的作用更值得进一步研究探讨,肠道上皮细胞中具有丰富的内质网结构,研究发现ers与uc有着紧密的联系,当肠上皮中的内质网功能受到干扰影响会导致肠道病理变化,同时也有相关研究指出肠黏膜免疫应答失调和肠上皮功能障碍在疾病的发生发展中也起到了重要作用。当肠内稳态遭到破坏,肠上皮细胞(intestinal epithelial cells, iecs)发生ers,造成肠黏膜损伤,ers和未折叠蛋白反应(unfolded protein response, upr)发挥了重要作用。uc主要表现为肠道内环境稳态失衡以及自身免疫反应的发生,而错误的upr在uc中起到了关键作用,因此通过调控ers来治疗和缓解uc是目前研究的新方向,通过调控ers能力以发挥作用。有研究指出,ers过量可能通过调控ers相关通路诱导肠上皮细胞凋亡,同时损伤肠黏膜屏障功能等相关连锁反应进而引起肠道炎症最终导致uc的发生。目前uc的研究多集中于调节免疫反应、抑制炎症反应等方面,同时内质网应激与其密切相关,在uc发生发展的过程中起到了重要机制作用,因此本文综述了ers在溃疡性结肠炎中作用机制的研究进展。

2. ers与肠道黏膜屏障

肠道作为内外环境物质交换媒介,具有消化吸收、屏障和免疫调节作用。肠道的黏膜上皮细胞提供了重要的屏障功能,其主要是由肠绒毛及隐窝构成。肠道的立体结构给予了肠腔大的接触面积,能够更好地吸收。同时小肠中丰富的干细胞能够不断增殖分化成为上皮细胞,不断更新的上皮细胞保持了小肠结构的完整。上皮细胞可细分为四类:潘氏细胞向下迁移至隐窝底部并通过分泌抗菌活性物质来阻挡有害微生物。杯状细胞以黏液和非黏蛋白的蛋白质如三叶因子、防御素等进行屏障保护。肠内分泌细胞可通过分泌肽类激素参与上皮细胞的修复。微皱褶细胞可摄取肠腔内抗原物质,然后传递下方免疫细胞。上皮细胞之间通过紧密连接、黏附连接和细胞桥粒等构建防御体系,共同抵御外来病原体的入侵。所以,当相关蛋白受到损伤破坏时,其屏障通透性发生改变,最终造成肠道损伤。研究发现ers与肠道疾病密切相关-,ers以及upr在肠内稳态中的表达以及对炎症性肠病的发病机理起到了重要作用 。肠上皮细胞代谢旺盛,具有发达的内质网结构,对ers非常敏感。肠上皮细胞发生ers后,能够调控多种靶基因的转录和炎性因子的分泌,对肠黏膜和屏障功能造成损害。由此可见,ers与肠黏膜屏障功能受损有密切关系,它们共同参与uc的发生发展。

uc特征性变化就是肠黏膜上皮屏障功能的缺陷和损伤、通透性的发生改变。肠上皮屏障在维持肠道免疫稳态中起着重要作用。肠上皮屏障中任何的异常都可能与uc的发病有关,ers介导的upr的激活在肠黏膜稳态中起着重要作用。紧密连接蛋白作为肠道的机械屏障,在保护肠道中发挥了重要作用。紧密连接由大量的整体膜蛋白和相关的细胞质蛋白组成,有着高度灵活的结构,可以进行动态排列,通过细胞内信号蛋白与紧密连接蛋白的相互作用。黏蛋白在调节上皮屏障功能中是重要的一环,胃肠道疾病中多数可见黏蛋白的异常。因此,ers引起的紧密连接蛋白和黏蛋白功能异常,进一步导致了肠上皮屏障功能受损。靳等研究表明,给予ers相关蛋白抑制剂会导致grp78、chop等表达增加,同时杯状细胞也有明显增加。long等的研究发现,花青素能够通过抑制chop、grp78、jnk的表达,减少肠上皮细胞凋亡。所以通过减轻ers,减少肠上皮细胞凋亡,维持肠道正常生理功能是有效的途径。同时长期持续ers会影响潘氏细胞及杯状细胞分泌功能,发生病理变化进而诱导uc的发生,如炎症反应,细胞凋亡,细胞自噬及黏膜屏障障碍等。许多的uc患者常表现出杯状细胞的异常,黏蛋白数量减少,当ers出现时,肠道黏膜的稳态被破坏,最终导致肠道黏膜屏障障碍。

3. ers相关信号通路

内质网(endoplasmic reticulum, er)是细胞的重要组成部分,是一种膜结构的细胞器,在蛋白质的加工合成起到不可缺少的作用,它参与了蛋白质的折叠,正确折叠的蛋白质从er中转运出来执行它们的功能。此外,er通过储存和释放来维持了细胞内ca2 的浓度。当某些生理或病理因素如细胞处于缺氧、氧化应激等环境中时,会造成稳态的失衡,这时会导致大量未折叠或是错误折叠的蛋白在er腔内聚集,同时ca2 失衡,脂质代谢失调,从而诱发了ers -。为了缓解内质网腔的蛋白质压力,ers激活其下游的upr,能通过加快未折叠蛋白质的降解、减少蛋白质生成来减弱ers并恢复er的稳定。当ers一直持续存在,upr会激活细胞内的凋亡信号诱导其凋亡,同时upr已知的er通路有肌醇需求酶1 (inositol requiring enzyme1, ire1)、蛋白激酶r样内质网激酶(protein kinase r-like er kinase, perk)、激活转录因子6 (activating transcription factor 6, atf6)。正常情况下它们与葡萄糖调节蛋白78 (glucose regulated protein 78, grp78)结合在一起处于非激活状态。当细胞处于应激状态时,grp78与perk、ire1和atf6脱离并与错误折叠的蛋白结合,使得perk、ire1和atf6随之释放激活其信号通路,ers发生后细胞通过多条信号通路以恢复细胞稳态-。与grp78解离后的perk磷酸化,并将真核生物翻译起始因子2α (eukaryotic initiation factor 2α, eif2α)磷酸化。eif2α的磷酸化能够减少内质网的蛋白质堆积,同时还会诱导atf4表达的上调。当发生重度ers时,经perk-eif2α通路上调的αtf4会进入到细胞核中与c/ebp同源蛋白(c/ebp-homologous protein, chop)结合,通过调控凋亡相关基因来加速细胞的死亡。当ers长期存在会激活凋亡和自噬的相关通路chop、c-jun氨基末端激酶(c-jun n-terminal kinases, jnk)和半胱天冬酶-12 (cysteinyl aspartate specific proteinase 12, caspase-12)通路。肠道上皮细胞中持续的ers,会导致其通过多种机制会促进和诱发肠道炎症,例如细胞的凋亡以及多种诱导炎症的信号通路。

3.1. ire1/xbp1介导的ers信号通路

ire1是一种丝氨酸/苏氨酸激酶和内切核糖核酸酶,其作为跨膜蛋白,在upr中起到重要作用,其中在体内广泛表达并发挥主要作用的是其中的ire1α 。当ers发生时,ire1能够磷酸化形成二聚体,激活其内切核酸酶活性,切割x盒结合蛋白1 (x-box binding protein 1 spliced, xbp1) mrna产生xbp1s,介导内质网相关蛋白质降解反应(er-associated degradation, erad) 。同时调节ire1依赖的mrna衰减(regulatedire1-dependent decay, ridd)的过程也依赖于核糖核酸内切酶降解与内质网结合的mrna ,最终通过ire1和xbp1的增高来减弱ers的压力-。因此,xbp1s和grp78常作为判断ers发生的重要标志。有研究发现敲除xbp1的小鼠潘氏细胞功能明显受损,对致病菌的反应减弱。同时xbp1缺乏能够诱导内质网应激,导致上皮细胞炎反应增强。xbp1同时还是ers过程中其他mrna的靶点,使er相关mrna选择性降解,减轻er的转运负担。有研究表明,敲除ire1β等位基因会导致ers,同时还会伴随grp78表达增高。若ire1缺失,会导致upr调控缺陷,进而引发uc。ire1还能降解部分er中的mrna来减轻er蛋白折叠带来的负荷。由此可见ire1的表达在uc的发生发展中起到重要作用,ire1表达的减少和增多都会对机体造成影响。zhang等通过下调或上调ire1的表达发现,upr在uc模型的黏膜中升高,抑制ire1加强了upr和ers,表明ire1可能是uc的潜在靶点。张雅丽通过应用dss造模,通过连草泻痢胶囊干预,发现grp78、p-ire1α检测的含量减少,说明通过抑制ire1/xbp1介导的ers,能够防治uc。由此可见,多种研究结果表明ire1通路在uc中被激活并对uc造成影响。

3.2. perk介导的ers信号通路

当upr发生时,perk作为带有一个丝氨酸/苏氨酸蛋白激酶结构域的跨膜蛋白能迅速感受到upr并作出抑制蛋白质的翻译的反应。在ers发生时,grp78通过解除对perk的抑制,激活其磷酸化真核翻译起始因子2α (eukaryotic initiation factor 2 alpha, eif2α)作用,进而通过eif2α的失活来抑制信使rna (messenger rna, mrna)的翻译,最终限制新生蛋白质向内质网腔的转运来减轻er的刺激。同时磷酸化的perk又能选择性地增加活化转录因子4 (activating transcription factor 4, atf4)的表达,atf4表达升高能调节细胞内氨基酸的转运和增加细胞的抗氧化应激能力-。同时atf4高表达会激活ccaat/增强子结合蛋白同源蛋白(ccaat/enhancer-binding protein homologous protein, chop)基因,chop能够抑制抗凋亡基因的表达,促进表达促凋亡基因来调节细胞的凋亡过程-。chop可以促进eif2α的去磷酸化,减弱eif2α翻译作用,使过多蛋白在er中累积而促进凋亡。有研究表明,将mef细胞的chop敲除可以通过抑制ers减少凋亡。同时有研究发现chop能够减少bcl-2的表达-以及介导促凋亡受体dr5的表达升高。chop在正常情况下表达量较低,当应激反应发生时chop表达会上调。chop与atf4相互作用,调控非折叠蛋白反应基因,激活促进蛋白质合成的基因。同时uc发病与perk通路有相关性,当perk被激活时,会进一步激活nf-κb,导致促炎因子增加,产生炎症反应。perk在细胞的凋亡中也能发挥作用。当uc发生时,在ers状态下,相关蛋白表达以诱导细胞发生凋亡,最终导致了肠黏膜屏障的损伤。吴志强等研究发现当ers发生时,通过抑制perk、减少chop的含量可以减轻对杯状细胞造成的损伤,达到保护肠黏膜屏障的作用。郑春菊等的研究证明降低atf4表达,减少炎症递质的释放来抑制炎症反应。研究发现,perk-eif2α-nf-κb通路与uc相关,可以通过抑制其通路来达到减少炎症,保护小肠上皮细胞的作用,减少uc造成的损伤 。同时也有实验发现可通过抑制氧化应激和ers明显缓解uc大鼠的结肠炎症。

3.3. atf6介导的ers信号通路

atf6是含有编码碱性亮氨酸拉链结构域的跨膜蛋白,分为atf6α和atf6β。atf6α具有upr相关基因激活特性,主要在高尔基体发生活化反应,当ers发生时,atf6α就会与grp78分离,经位点蛋白酶的酶切作用,产生具有转录活性的片段,通过移位入细胞核后可以调节伴侣蛋白、内质网相关降解蛋白(er-associated degradation, erad)、xbp1等蛋白的表达维持内质网稳态以及调节细胞凋亡的过程-。如果不能及时纠正ers,ers会持续加重,最终导致细胞凋亡,造成机体损伤。研究表明,当敲除小鼠atf6α后显示bip和grp94表达下降,并且结肠上皮中chop的表达增加。也有研究表明,在dss诱导小鼠结肠炎模型中,敲除atf6α小鼠的结肠炎症状比野生型小鼠更严重。有临床研究发现,uc病人的肠道炎性反应区域中atf6含量更高。

4. 总结与展望

综上所述,ers与肠道疾病发生发展密切相关,ers本质作为一种自我保护机制,但过于激烈的ers会激活upr,导致细胞功能损伤、激活凋亡,损害肠黏膜,造成机体损伤。内质网作为重要的细胞组织,其参与了多种正常生理功能。过度的ers引起肠道损伤已经成为关注的核心,抑制持续过度的ers可以预防以及治疗uc。本综述旨在说明内质网应激及其相关机制在uc中扮演的角色。如何通过调控esr机制维持蛋白质稳态进而治疗和预防uc将是未来相关领域的研究重点。促进肠上皮黏膜修复,维持肠屏障功能稳态已成为治疗uc药物研发的主要方向。已有多项研究表明,包括甘草、青蒿、黄连等单味中药及多种中药复方以及电针等中医药特色治疗方法在调控ers治疗uc发挥作用,未来探究中医药通过调控ers防治uc也不失为一种新的方向。同时关于ers与溃疡性结肠炎的研究机制尚不十分清楚,也无明确有效的治疗手段,仍需要进一步研究和探讨。

基金项目

浙江中医药大学校级科研项目(2022jkjntz11);浙江中医药大学中医药科学院科研比武项目(2022j06、2021j03);浙江省医药卫生科技计划项目(2022ky912);浙江省中医药科技计划项目(2018za029)。

notes

*通讯作者。

参考文献

[1] park, s.h. and park, s.h. (2022) personalized medicine in inflammatory bowel disease: perspectives on asia. journal of gastroenterology and hepatology, 37, 1434-1445.
[2] ng, s.c., shi, h.y., hamidi, n., et al. (2017) worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. the lancet, 390, 2769-2778.
[3] kaplan, g.g. (2015) the global burden of ibd: from 2015 to 2025. nature reviews gastroenterology & hepatology, 12, 720-727.
[4] 尹硕鑫, 张涛, 王舒萍, 等. 维得利珠单抗诱导和维持炎症性肠病疗效meta分析[j]. 陕西医学杂志, 2022, 51(1): 103-110.
[5] maloy, k.j. and powrie, f. (2011) intestinal homeostasis and its breakdown in inflammatory bowel disease. nature, 474, 298-306.
[6] qiao, d., zhang, z., zhang, y., chen, q., chen, y., tang, y., et al. (2021) regulation of endoplasmic reticulum stress-autophagy: a potential therapeutic target for ulcerative colitis. frontiers in pharmacology, 12, article 697360.
[7] roda, g. (2010) intestinal epithelial cells in inflammatory bowel diseases. world journal of gastroenterology, 16, 4264-4271.
[8] bevins, c.l. and salzman, n.h. (2011) paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. nature reviews microbiology, 9, 356-368.
[9] goto, y. and kiyono, h. (2015) epithelial barrier: an interface for the cross-communication between gut flora and immune system. immunological reviews, 245, 147-163.
[10] gill, n., wlodarska, m. and finlay, b.b. (2011) roadblocks in the gut: barriers to enteric infection. cellular microbiology, 13, 660-669.
[11] bischoff, s.c., barbara, g., buurman, w., ockhuizen, t., schulzke, j., serino, m., et al. (2014) intestinal permeability—a new target for disease prevention and therapy. bmc gastroenterology, 14, article no. 189.
[12] michielan, a. and d’incà, r. (2015) intestinal permeability in inflammatory bowel disease: pathogenesis, clinical evaluation, and therapy of leaky gut. mediators of inflammation, 2015, article id: 628157.
[13] szabo, g. (2015) gut-liver axis in alcoholic liver disease. gastroenterology, 148, 30-36.
[14] rutkowski, d.t. and hegde, r.s. (2010) regulation of basal cellular physiology by the homeostatic unfolded protein response. journal of cell biology, 189, 783-794.
[15] grootjans, j., kaser, a., kaufman, r.j. and blumberg, r.s. (2016) the unfolded protein response in immunity and inflammation. nature reviews immunology, 16, 469-484.
[16] 郑烈, 张亚利, 戴彦成, 等. 健脾清肠方含药血清对ht29细胞内质网应激模型nf-κb信号通路的影响[j]. 中华中医药杂志, 2019, 34(3): 1194-1197.
[17] jiang, y., zhang, c. and wang, t. (2020) bfgf ameliorates intestinal mucosal permeability and barrier function through tight junction proteins in burn injury rats. burns, 47, 1129-1136.
[18] slifer, z.m. and blikslager, a.t. (2020) the integral role of tight junction proteins in the repair of injured intestinal epithelium. international journal of molecular sciences, 21, article 972.
[19] 靳宇航, 贾海, 王仁杰, 等. 内质网应激信号影响猪肠道屏障功能的研究进展[j]. 动物营养学报, 2021, 33(6): 3072-3080.
[20] long, m., chen, x., wang, n., wang, m., pan, j., tong, j., et al. (2018) proanthocyanidins protect epithelial cells from zearalenone-induced apoptosis via inhibition of endoplasmic reticulum stress-induced apoptosis pathways in mouse small intestines. molecules, 23, article 1508.
[21] li, n., wang, x., jiang, l., zhang, m., li, n., wei, z., et al. (2016) effects of endoplasmic reticulum stress on the expression of inflammatory cytokines in patients with ulcerative colitis. world journal of gastroenterology, 22, 2357-2365.
[22] cao, s.s. (2016) epithelial er stress in crohnʼs disease and ulcerative colitis. inflammatory bowel diseases, 22, 984-993.
[23] schwarz, d.s. and blower, m.d. (2015) the endoplasmic reticulum: structure, function and response to cellular signaling. cellular and molecular life sciences, 73, 79-94.
[24] walter, p. and ron, d. (2011) the unfolded protein response: from stress pathway to homeostatic regulation. science, 334, 1081-1086.
[25] chen, x. and cubillos-ruiz, j.r. (2020) endoplasmic reticulum stress signals in the tumour and its microenvironment. nature reviews cancer, 21, 71-88.
[26] cao, s.s. and kaufman, r.j. (2012) unfolded protein response. current biology, 22, r622-r626.
[27] almanza, a., et al. (2018) endoplasmic reticulum stress signalling—from basic mechanisms to clinical applications. febs journal, 286, 241-278.
[28] kaser, a., lee, a., franke, a., glickman, j.n., zeissig, s., tilg, h., et al. (2008) xbp1 links er stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. cell, 134, 743-756.
[29] hetz, c. (2024) the unfolded protein response: controlling cell fate decisions under er stress and beyond. nature reviews molecular cell biology, 13, 89-102.
[30] bogaert, s., de vos, m., olievier, k., peeters, h., elewaut, d., lambrecht, b., et al. (2011) involvement of endoplasmic reticulum stress in inflammatory bowel disease: a different implication for colonic and ileal disease? plos one, 6, e25589.
[31] zhang, z., qian, q., li, m., et al. (2020) the unfolded protein response regulates hepatic autophagy by sxbp1-mediated activation of tfeb. autophagy, 17, 1841-1855.
[32] le, q.g. and kimata, y. (2021) multiple ways for stress sensing and regulation of the endoplasmic reticulum-stress sensors. cell structure and function, 46, 37-49.
[33] urra, h., dufey, e., lisbona, f., rojas-rivera, d. and hetz, c. (2013) when er stress reaches a dead end. biochimica et biophysica acta (bba)—molecular cell research, 1833, 3507-3517.
[34] wu, h., guo, h., liu, h., cui, h., fang, j., zuo, z., et al. (2020) copper sulfate-induced endoplasmic reticulum stress promotes hepatic apoptosis by activating chop, jnk and caspase-12 signaling pathways. ecotoxicology and environmental safety, 191, article id: 110236.
[35] 陈鹏, 聂源, 朱萱. 内质网应激信号通路在肝纤维化中的研究进展[j]. 生命科学, 2022, 34(11): 1402-1408.
[36] karagöz, g.e., acosta-alvear, d., nguyen, h.t., lee, c.p., chu, f. and walter, p. (2017) an unfolded protein-induced conformational switch activates mammalian ire1. elife, 6, e30700.
[37] men, l., yu, s., yao, j., li, y., ren, d. and du, j. (2018) selenoprotein s protects against adipocyte death through mediation of the ire1α-sxbp11 pathway. biochemical and biophysical research communications, 503, 2866-2871.
[38] shan, b., wang, x., wu, y., xu, c., xia, z., dai, j., et al. (2017) the metabolic er stress sensor ire1α suppresses alternative activation of macrophages and impairs energy expenditure in obesity. nature immunology, 18, 519-529.
[39] hollien, j., lin, j.h., li, h., stevens, n., walter, p. and weissman, j.s. (2009) regulated ire1-dependent decay of messenger rnas in mammalian cells. journal of cell biology, 186, 323-331.
[40] camarillo, g.f., goyon, e.i., zuñiga, r.b., salas, l.a.s., escárcega, a.e.p. and yamamoto-furusho, j.k. (2020) gene expression profiling of mediators associated with the inflammatory pathways in the intestinal tissue from patients with ulcerative colitis. mediators of inflammation, 2020, article id: 9238970.
[41] kaser, a., adolph, t.e. and blumberg, r.s. (2013) the unfolded protein response and gastrointestinal disease. seminars in immunopathology, 35, 307-319.
[42] chen, y., wu, z.y., huang, s.j., et al. (2022) adipocyte ire1α promotes pgc1α mrna decay and restrains adaptive thermo-genesis. nature metabolism, 4, 1166-1184.
[43] 罗琦琦, 曲光瑾, 罗善顺. 微rnas与内质网应激信号通路的相互调控作用[j]. 中国生物化学与分子生物学报, 2022, 38(2): 191-196.
[44] zhang, b., su, x.y., xie, z.y., et al. (2020) inositol-requiring kinase 1 regulates apoptosis via inducing endoplasmic reticulum stress in colitis epithelial cells. digestive diseases and sciences, 66, 3015-3025.
[45] 张雅丽, 孙佳宁, 战晶玉, 等. 连草泻痢胶囊对溃疡性结肠炎大鼠内质网应激及炎症反应的影响[j]. 中国中医药信息杂志, 2023, 30(5): 97-103.
[46] xu, f., du, w., zou, q., wang, y., zhang, x., xing, x., et al. (2020) copii mitigates er stress by promoting formation of er whorls. cell research, 31, 141-156.
[47] rozpędek, w., pytel, d., diehl, j.a., et al. (2016) small molecule inhibitors of perk-dependent signaling pathway as a novel, therapeutic molecular strategy in alzheimer’s disease treatment. polski merkuriusz lekarski, 41, 5-10.
[48] george, a.k., behera, j., kelly, k.e., mondal, n.k., richardson, k.p. and tyagi, n. (2018) exercise mitigates alcohol induced endoplasmic reticulum stress mediated cognitive impairment through atf6-herp signaling. scientific reports, 8, article no. 5158.
[49] marciniak, s.j., yun, c.y., oyadomari, s., novoa, i., zhang, y., jungreis, r., et al. (2004) chop induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. genes & development, 18, 3066-3077.
[50] hu, h., tian, m., ding, c. and yu, s. (2019) the c/ebp homologous protein (chop) transcription factor functions in endoplasmic reticulum stress-induced apoptosis and microbial infection. frontiers in immunology, 9, article 3083.
[51] zhang, s.x., sanders, e., fliesler, s.j. and wang, j.j. (2014) endoplasmic reticulum stress and the unfolded protein responses in retinal degeneration. experimental eye research, 125, 30-40.
[52] palam, l.r., baird, t.d. and wek, r.c. (2011) phosphorylation of eif2 facilitates ribosomal bypass of an inhibitory upstream orf to enhance chop translation. journal of biological chemistry, 286, 10939-10949.
[53] feng, k., ge, y., chen, z., li, x., liu, z., li, x., et al. (2019) curcumin inhibits the perk-eif2α-chop pathway through promoting sirt1 expression in oxidative stress-induced rat chondrocytes and ameliorates osteoarthritis progression in a rat model. oxidative medicine and cellular longevity, 2019, article id: 8574386.
[54] hu, x., duan, t., wu, z., tang, c. and cao, z. (2021) puerarin inhibits the perk-eif2α-atf4-chop pathway through inactivating jak2/stat3 signal in pancreatic β-cells. the american journal of chinese medicine, 49, 1723-1738.
[55] lu, p.d., harding, h.p. and ron, d. (2004) translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response. the journal of cell biology, 167, 27-33.
[56] hu hai, tian ming-xing, ding chan. chop调控内质网应激介导细胞凋亡的机制[j]. 中国预防兽医学报, 2019, 41(2): 219.
[57] hooper, k.m., barlow, p.g., henderson, p. and stevens, c. (2018) interactions between autophagy and the unfolded protein response: implications for inflammatory bowel disease. inflammatory bowel diseases, 25, 661-671.
[58] rodrigues, b.l., dotti, i., pascoal, l.b., morari, j., esteller, m., coope, a., et al. (2022) endoplasmic reticulum stress in colonic mucosa of ulcerative colitis patients is mediated by perk and ire1 pathway activation. mediators of inflammation, 2022, article id: 6049500.
[59] 罗敏, 杜英杰, 姜燕诗, 等. 基于内质网应激perk信号通路探讨芍药汤对uc大鼠的作用机制[j]. 湖南中医药大学学报, 2021, 41(11): 1663-1668.
[60] 朱玉梅, 董筠. 中医药治疗溃疡性结肠炎研究进展[j]. 河南中医, 2021, 41(7): 1121-1125.
[61] 王金钢, 陈春晓, 任于晗, 等. 二甲双胍通过抑制内质网应激诱导的细胞凋亡改善结肠炎黏膜上皮屏障损伤[j]. 浙江大学学报(医学版), 2021, 50(5): 627-632.
[62] 吴志强, 肖玉娇, 谷丽瑶, 等. 基于perk信号通路介导的细胞凋亡及杯状细胞破坏探讨芍药汤对溃疡性结肠炎大鼠的作用机制[j]. 陕西中医, 2022, 43(11): 1511-1515.
[63] 郑春菊, 王斌, 赵恩春, 等. 基于疏肝健脾法的怡情止泻汤调控内质网应激/nf-κb通路治疗溃疡性结肠炎[j]. 中药药理与临床, 2022, 38(2): 173-178.
[64] 莫达瑜, 刘英超, 江向红, 等. 甘草酸苷调节内质网应激perk-elf2α-nf-κb信号通路治疗溃疡性结肠炎的机制研究[j]. 时珍国医国药, 2022, 33(8): 1860-1864.
[65] 沈雁, 王章流, 钟继红, 等. 基于perk-eif2α-nf-κb信号通路研究甘草酸苷对小鼠肠上皮细胞内质网应激的保护作用[j]. 中国现代应用药学, 2022, 39(11): 1389-1394.
[66] wu, y.y., liu, m.j., yin, s.j., et al. (2020) acupuncture reduce colonic inflammation by suppressing oxidative stress and endo-plasmic reticulum stress in rats with ulcerative colitis. acupuncture research, 45, 8-13.
[67] adachi, y., yamamoto, k., okada, t., yoshida, h., harada, a. and mori, k. (2008) atf6 is a transcription factor specializing in the regulation of quality control proteins in the endoplasmic reticulum. cell structure and function, 33, 75-89.
[68] wu, j., et al. (2007) atf6α optimizes long-term endoplasmic reticulum function to protect cells from chronic stress. developmental cell, 13, 351-364.
[69] sharma, r.b., darko, c. and alonso, l.c. (2020) intersection of the atf6 and xbp1 er stress pathways in mouse islet cells. journal of biological chemistry, 295, 14164-14177.
[70] walter, f., o’brien, a., concannon, c.g., düssmann, h. and prehn, j.h.m. (2018) er stress signaling has an activating transcription factor 6α (atf6)-dependent “off-switch”. journal of biological chemistry, 293, 18270-18284.
[71] han, l., xu, y.h. and shi, y.x. (2021) molecular mechanism of atf6α/s1p/s2p signaling pathway in hippocampal neuron apoptosis in sps rats. journal of molecular neuroscience.
[72] so, j. (2019) erratum to: roles of endoplasmic reticulum stress in immune responses. molecules and cells, 42, 501-501.
[73] cao, s.s., et al. (2013) the unfolded protein response and chemical chaperones reduce protein misfolding and colitis in mice. gastroenterology, 144, 989-1000.
[74] cao, s.s., zimmermann, e.m., chuang, b., song, b., nwokoye, a., wilkinson, j.e., et al. (2013) the unfolded protein response and chemical chaperones reduce protein misfolding and colitis in mice. gastroenterology, 144, 989-1000.e6.
[75] negroni, a., et al. (2014) endoplasmic reticulum stress and unfolded protein response are involved in paediatric inflammatory bowel disease. digestive & liver disease, 46, 788-794.
为你推荐
凯发国际一触即发的友情链接
网站地图