儿童iga血管炎的临床研究进展-凯发国际一触即发

儿童iga血管炎的临床研究进展
progress of clinical research on iga vasculitis in children
doi: , , html, ,   
作者: 张 冰, 卢 蓉:延安大学附属医院儿科,陕西 延安
关键词: ;;;;;;;;;;;;;
摘要: 免疫球蛋白a血管炎(igav)是一种白细胞碎裂性免疫复合体介导的小血管炎,可导致多脏器受累。急性期可能出现严重的胃肠道出血、肠套叠或穿孔等并发症甚至危及生命。现就igav的病因、机制、危险因素、治疗的研究进展进行综述,旨在早期识别igav患儿,避免进展为重症病例,有利于临床有针对性的早期预防和治疗。
abstract: immunoglobulin a vasculitis (igav) is a small vasculitis mediated by leukocyte fragmentation immune complex, which can lead to multiple organ involvement. severe gastrointestinal bleeding, intussusception, perforation and other complications may occur in the acute stage, even life-threatening. this article reviews the etiology, mechanism, risk factors and treatment of igav, aiming at early identification of children with igav and avoiding progression to severe cases, which is conducive to targeted early prevention and treatment.
文章引用:张冰, 卢蓉. 儿童iga血管炎的临床研究进展[j]. 临床医学进展, 2024, 14(11): 796-807.

1. 引言

iga血管炎(igav)过去称过敏性紫癜(henoch-schönlein purpura, hsp),是一种多系统小血管性血管炎,是儿童期最常见的血管炎,临床表现为非血小板减少性紫癜,伴胃肠道、关节、肾脏等脏器系统受累[1] [2],以及其他非常罕见的表现(肺泡出血性出血、心肌炎、尿道炎、角膜炎、硬化症、脑血管炎、外周神经病变) [3]。igav的预后一般良好,但igav急性期可能出现严重的胃肠道出血、肠套叠或穿孔等并发症,同时,严重的igav也可表现为肾脏受累(igav发展为igavn),出现肾功能迅速恶化甚至危及生命。因此,研究igav的病因、生物标志物及发病机制,了解如何在早期识别igav患儿,避免进展为重症病例,有利于临床有针对性的进行早期预防和治疗[4] [5]

2. 病因

2.1. 微生物感染

病毒、细菌或真菌等抗原刺激粘膜免疫系统增加多态iga的沉积和清除受损是igavn发生的主要危险因素[6] [7]。约50%的iga血管炎病例发生前伴有上呼吸道感染(urti),最常见的是链球菌感染[8]。炎症可破坏组织细胞,增加毛细血管的脆弱性和通透性,从而导致血液外渗和紫癜的发展。它可能通过激活免疫系统和内皮细胞诱导或增强crp和白细胞介素-8 (il-8)的产生,从而导致补体系统激活和炎症。相反,消除链球菌感染可能通过降低crp和il-8水平来减少igav的复发。病毒感染是诱导细胞因子风暴的潜在候选因素,在严重的igav病例中,细胞因子风暴是一种高炎症状态,可导致组织损伤和器官衰竭。因此,了解igav中环境或感染因素与细胞因子的相互作用或协同作用机制可能为igav的病因和病理生理学提供新的见解[9]

2.2. 肠道菌群稳态失调

肠道微生态系统是人体中最重要、最复杂的生态系统[10]。人体肠道菌群与粘膜免疫密切相关。一方面,肠道内特别是回结肠内存在许多免疫组织和细胞,另一方面,肠道菌群可以通过分泌粘液来抵抗有害细菌,并通过细胞因子调节从而影响肠道的免疫功能。一旦菌群受到干扰,免疫系统就会产生识别错误,导致人体出现免疫疾病。肠道菌群的生态失调与igav的发生密切相关,igav患儿肠道微生物丰度低于正常儿童[11]

2.3. 疫苗接种

在儿童中,接种疫苗与随后发生的igav之间存在公认的关联,但这种风险很低[8]。hu等研究[12]表明,患有covid-19相关igav的儿童比大流行前的igav儿童发热和肾脏受累更为频繁,完全恢复率和未接受任何治疗的缓解患者百分比较低,表明与covid-19相关的igav儿童经历了更严重的病程,即使它们的疾病结局相似。covid-19疫苗接种后iga血管炎的出现可能是一个免疫过程,由疫苗抗原(sars-cov-2刺突蛋白)形成免疫复合物触发,这些免疫复合物沉积在血管壁上,诱导炎症和免疫系统过度激活[13] [14]。hashi也表明sars-cov-2疫苗接种可能是igav发展的触发因素[15]

2.4. 药物

iga血管炎的发病可能与药物的治疗之间存在关系[8]。英夫利昔单抗(ifx)是一种抗肿瘤坏死因子-α (tnf-α)的嵌合单克隆抗体。有报道称患有瘘管性克罗恩病的患儿在应用ifx后出现腿部紫癜性病变,发展为ifx相关igav,停止ifx治疗后皮肤病变完全消退。机制可能是抗tnf抗体的产生导致免疫复合物介导的iii型超敏反应,以及从主要的th1细胞因子应答到与抗体介导的免疫机制相关的th2应答的转换[16]

3. 生物标志物及发病机制

3.1. 免疫球蛋白a (iga)及半乳糖缺乏iga1 (gd-iga1)

iga是人类免疫球蛋白家族的一员,是粘膜防御的重要组成部分,其作用主要是中和细菌产物、凝集微生物和干扰细菌运动[17]。igav是一种白细胞破坏性血管炎,在小血管内或周围沉积了iga显性免疫复合物[4]。igav儿童有明显的血清免疫球蛋白谱紊乱[17]。有研究表明igavn患儿尿iga浓度升高,有可能作为一种非侵入性生物液来进一步评估该病肾炎[18]。iga1的铰链区域异常驱动,使结构和功能多样化,特别是o-聚糖,它可能异常糖基化,导致半乳糖缺乏的iga1 (gd-iga1),gd-iga1是igav患者中研究最广泛的潜在生物标志物,正常的iga通过肝细胞清除,然而,gd-iga1逃避了这一正常机制[18]-[20]。gd-iga1作为抗iga-igg的表位[19]。igg和iga抗体与gd-iga1形成聚合循环免疫复合物(gd-iga1-iga, gd-iga1-igg),这些免疫复合物太大,无法进入肝脏间隙或避免肝细胞的降解,沉积在血管壁和系膜中,激活替代补体途径,通过与中性粒细胞上的cd89结合,释放酶和活性氧(ros),最终导致内皮损害,引起全身性炎症[20]

3.2. 中性粒细胞胞外陷阱(nets)

中性粒细胞是人体外周循环中最丰富的白细胞,构成了人体抵御病原体的第一道防线[1]。中性粒细胞胞外陷阱(nets)是由微生物触发的中性粒细胞释放的抗菌蛋白修饰的网状dna [21] [22]。在过去两年中,igav患者的外周循环、皮肤、肾脏和胃肠道组织中发现了广泛的nets,且起病期和活跃期患儿nets水平显著升高[1]。一方面,iga或iga免疫复合物(iga-ics)可激活中性粒细胞释放nets。nets相关成分可直接损伤组织或通过激活下游靶免疫细胞分泌大量细胞因子,如肿瘤坏死因子α (tnf-α)、白细胞介素8 (il-8),细胞因子可加重组织损伤,引起中性粒细胞聚集,形成恶性循环[1] [23]。另一方面,dnase i具有直接降解igav中nets组分的能力,导致nets水平显著降低,组织损伤显著减少。在igav发病和igav活跃的儿童中dnase i活性降低,可能导致免疫失衡,从而使nets显著增加并导致组织损伤;补体系统的过度激活和补体蛋白c1q的过度沉积也会抑制dnase i的产生,导致nets的无效降解[1] [24] [25]。因此,过多的nets形成与dnase i活性不足有关,dnase i活性的降低最终导致nets降解能力的降低,这是igav中nets增加的原因之一[1] [23]。igav中nets的形成和清除不平衡,导致nets过度积累,最终导致自身免疫性疾病、慢性炎症和组织损伤。因此,nets可能是评估igav儿童疾病活动性的潜在生物学指标[1]

3.3. 抗内皮细胞抗体(aecas)和il-8

aecas是一种针对人类内皮细胞上特征不明显的抗原的异质性抗体[26]。在igav中有潜在的作用,入侵的病原体可能具有与人血管壁相似的抗原结构,导致产生交叉反应的iga1-aecas,进而与内皮细胞上的自身抗原结合,在tnf-α的作用下增强,可能导致内皮细胞释放il-8 [19]。il-8是一种趋化和炎症细胞因子,吸引和激活中性粒细胞,诱导中性粒细胞迁移,iga1-aecas和iga1 fcα受体i (fcαri,也称为cd89)对中性粒细胞的相互作用诱导白三烯b4 (ltb4)释放,形成正反馈循环,进一步招募中性粒细胞,对血管内皮造成损害,这种血管损伤进一步增强了免疫细胞的募集,导致iga抗体的产生增加。最终导致血管渗漏、水肿、出血和组织坏死,表现为紫癜、关节炎、腹痛和肾脏受累。igav患者的il-8水平明显升高,因此,它可以作为igav肾炎的预后生物标志物[9] [19]

3.4. 内皮素-1 (et-1)

et-1由内皮细胞产生,是一种有效的肾血管收缩剂。et-1通过直接刺激醛固酮的产生参与肾素–血管紧张素–醛固酮系统(raas);这些因素可能导致肾功能损害,组织坏死因子-α (tnf-α)也有报道可增加et-1的产生[19] [27]。igav患者活动期的血浆et-1浓度明显高于缓解期,并且尿et-1可预测急性疾病持续时间,表明et-1的作用与igav活动性有关[19] [27] [28]

3.5. 红细胞谷胱甘肽s-转移酶(e-gst)

谷胱甘肽s-转移酶(gst)的主要功能是催化亲电底物与谷胱甘肽的结合,目的是使其失活并以肾脏排泄为主[29]-[31]。红细胞中的主要gst (e-gst)是一种pi类同工酶。在igavn患儿中,e-gst活性明显高于无肾炎igav患者(igavwn)和健康儿童。在igav发病后3个月和6个月检测e-gst活性时,敏感性降低,特异性增加,说明e-gst在igav发病时预测igavn的发展方面具有最大价值。血清e-gst活性是一种敏感、特异、微创、易操作、廉价的实验室检测方法。因此,它可以作为评估igavn发展风险的另一个可靠的生物标志物[31]

3.6. 先天性淋巴样细胞(ilc)

ilc家族是一组先天效应细胞,富集于屏障表面,提供早期和迅速的防御性免疫反应,以保护上皮完整性和组织免疫[32] [33]。根据其来源和功能,可分为1型、2型和3型ilc亚群、自然杀伤(nk)细胞和淋巴组织诱导剂(lti)细胞5个亚群[34]。我们发现igav患者外周血ilc1升高,ilc3降低,ilc2无明显变化,且治疗后ilc1/ilc3比值明显降低,推测ilc3可能在igav急性期转化为ilc1,在抵抗外来病原体中发挥作用,而ilc1可能在疾病恢复期转化为ilc3。而间质外体细胞分泌il-33促进了ilc2在血液循环和肾组织中的稳定性[32]。这都提示ilc1和ilc3可能参与了igav的发病过程,并可能与疾病的严重程度相关。

3.7. 血清蛋白聚糖-1 (sdc-1)

内皮糖萼作为一种保护屏障,覆盖在血管内皮和肠上皮的管腔表面[26]。sdc-1是糖萼致密内层的主要成分,也是内皮功能障碍的敏感指标,它在结构上与内皮细胞膜相连。当炎症反应、创伤和其他病理情况发生时,sdc-1可以通过各种介质(如细胞因子或活性氧(ros))裂解,其外结构域从细胞表面脱落并积聚在患者的血清中[26] [35]。作为全身性血管炎,igav会损害血管内皮细胞并将sdc-1释放到血液中。此外,igav的腹腔作用破坏肠上皮和粘膜的完整性,可能释放更多的sdc-1。因此,sdc-1可能是igav患者血管内皮损伤和粘膜损伤的一种新的诊断标志物[26]

3.8. 锌-α-2-糖蛋白1 (azgp1)

azgp1是一种分泌性糖蛋白,主要表达于脂肪细胞和上皮细胞,包括肾小管上皮细胞,在细胞完整性和上皮分化方面发挥稳定作用[5] [36] [37]。肾脏上皮细胞的衰老和增殖丧失与azgp1的表达增加有关,在衰老肾脏中抑制azgp1可增加损伤后的增殖反应[5] [38]。因此,azgp1在正常表达情况下对肾脏有保护作用,当肾脏受损时则会过表达,加重肾脏损伤。azgp1可能在igav疾病的进展中通过上述过程引起肾脏受累。因此,azgp1可作为一种有用的生物标志物和早期诊断igavn发生的潜在指标[5]

3.9. 脂质代谢产物

脂质代谢可能通过心血管疾病、胰岛素抵抗、细胞凋亡和炎症影响igav的发病机制。甘油磷脂(gp)根据磷酸基团的不同可分为磷脂酰甘油(pg)、磷脂酰胆碱(pc)、磷脂酰乙醇胺(pe)。溶磷脂酰胆碱(lpc)被称为“心血管疾病的油脂”,它可以激活血小板,活化的血小板诱导炎性细胞因子的释放和表面分子的呈现,募集中性粒细胞,释放中性粒细胞胞外陷阱(nets)。同时,血小板可以释放c3和gm-csf,这都促进igav的生成[39]。作为一种抗炎和抗氧化剂,pc通过降低促炎细胞因子tnf-α和il-6来改善肾脏氧化应激,通过增强抗氧化酶活性来减少肾小球小管变性和肥大[39]-[41]。igavn中pc (38:6) h显著降低,可能是igavn的潜在生物标志物。此外,降低的pe(21:4)-h可水解释放游离花生四烯酸,释放多种类二十烷如前列腺素和白三烯,也引起igav血管内皮细胞的炎症和损伤[39]

3.10. 纤维蛋白原α链(fga)

纤维蛋白原α链(fga)是血清纤维蛋白原的一种组分,通过二硫键与β-和γ-多肽链形成对称的二聚体结构。纤维蛋白原和纤维蛋白降解产物通过与内皮层和白细胞的配体受体相互作用吸引外周白细胞到血管壁上。白细胞–内皮相互作用是igav患者的关键现象[42]-[44]。liu等发现igav患者fga肽区表达上调,表明fga可能是igav的潜在生物标志物[42]

3.11. 高迁移率组盒1 (hmgb1)和晚期糖基化终产物受体(rage)

hmgb1是一种多效性细胞因子,作为促炎症信号,可能通过激活参与促炎细胞因子基因转录的中枢信号通路nf-κb来增强炎症,并增加内皮粘附分子和选择素的表达[20] [45]。hmgb1在igav的急性期浓度较高。随访期间,igavn患者尿中hmgb1浓度高于无肾炎患者,且与尿检红细胞及肾炎转归呈正相关。由于一定数量的患者在igav的临床过程中会发生肾炎,因此测量尿液中hmgb1的浓度可能是评估igavn患者并制定治疗方案的有用工具。rage是一种跨膜蛋白,具有信号传递功能,单核细胞、巨噬细胞和其他细胞上的rage在其主要配体hmgb1浓度增加时过表达,引发炎症免疫反应。免疫复合物可激活rage在人内皮细胞上的表达,参与hmgb1-rage轴的反应,促进igav的产生,诱导tnf-α的产生。与血清hmgb1相似,igav患者在基线和随访后的血清rage浓度也存在差异。这表明rage可作为igav的预测因子甚至治疗靶点[20]

3.12. 调节性t淋巴细胞(tregs)、辅助性t细胞(th)和调节性b细胞(breg)亚群

tregs是辅助性cd4 t淋巴细胞的一个亚群,能够下调免疫激活,通过细胞间接触或分泌抗炎细胞因子,如il-10和转化生长因子-β (tgf-β)起作用,tgf-β诱导脂多糖刺激的b淋巴细胞产生iga [46]。igav患者中明显升高的是适应性treg (itreg),而非天然treg (ntreg),说明环境因素可以通过诱导免疫细胞分化障碍介导igav的发生[47]。在igav患者中可观察到辅助性t细胞亚群的失衡。th2通过分泌细胞因子il-4和il-5促进血管内皮细胞粘附分子的表达,从而增强嗜酸性粒细胞(eoss)、嗜碱性粒细胞和内皮细胞的结合,引起炎症细胞向局部组织浸润。il-5还可募集tgf-β和各种细胞因子促进b淋巴细胞产生iga,过量的iga沉积在血管上导致血管炎和组织损伤[48] [49]。th3细胞通过分泌tgf-β,导致b细胞谱系过度生产iga [46]。通过th17源发育的滤泡辅助t细胞(tfh)导致b细胞的同型转换以诱导iga的产生,外周血th17细胞的升高及血清il-17水平可在一定程度上促进igav患者血管炎症的发生[47] [50] [51]。hsp大鼠体内母系表达基因8 (meg8)过表达,通过mir-107/stat3轴导致外周血cd4 t细胞群中th17/treg失衡进而促使igav的发生[52]。综上所述,包括tfh细胞、th2细胞、th3细胞和th17细胞在内的辅助性t细胞的过度分化可能参与了igav的发生发展。在breg缺乏症患者中,可能异常糖基化的iga不受控制的产生和沉积[10]将导致肾脏损害。这些数据可能为igav潜在的生物标志物和生物学机制的研究提供有用的信息和方向[46] [47]

3.13. 人类白细胞抗原(hla)

igav具有较强的遗传易感性,遗传异常促使igav的发展,这可能是基因–基因相互作用的结果[53]。在比较健康个体和igav患者对疾病易感性的遗传变异时,发现人类白细胞抗原(hla)基因存在显著差异,其中hla ii类基因相关性最强[54]。我们的研究中hla区域的异常信号均在hla-drb1。hla-drb1是一种主要分布在抗原呈递细胞表面负责免疫系统调节的hla ii分子。hla-drb1等位基因和氨基酸位点改变导致抗原刺激后抗原提呈细胞和th细胞异常活化,最终导致igav发生[53]。我们研究表明,hla-drb1*12基因与igav呈显著正相关,有胃肠道表现的igav患者中hla-drb1*10:01和-drb1*11:03的出现频率显著高于对照组,而出现肾炎的患者中hla-drb1*14:01p的出现频率显著高于对照组。因此,hla位点遗传多态性的鉴定可能有助于确定严重疾病和预后不良的高风险个体,特别是适用于gi累及和igavn的患者,提高我们对igav发病机制和临床异质性的理解[54]

3.14. 微rna (mirnas)-let-7a和肿瘤坏死因子-α蛋白-3-抗体(tnfaip3)

血管内皮细胞凋亡是igav中最重要的病理现象,因此,抑制血管内皮细胞凋亡可有效抑制儿童igav的发生和发展tnfaip3是一种抑制nf-κb通路激活的泛素编辑酶,具有基于泛素化功能的抗炎作用[55]。nf-κb是一种通过调节细胞因子及相关基因在内皮细胞活化中起关键作用的转录因子,参与缺氧诱导的内皮细胞死亡和凋亡,激活nf-κb信号通路可导致血管内皮细胞凋亡[55]-[57]。在儿童igav患者的皮肤病变组织和igav血清刺激的人脐静脉内皮细胞(huvecs)中,tnfaip3明显下调。tnfaip3是let-7a的功能靶点。let-7a负调控tnfaip3的表达。敲除let-7a可通过抑制nf-κb信号通路显著抑制igav血清刺激的huvecs凋亡,进而通过沉默靶基因tnfaip3逆转这一作用,显著抑制igav血清诱导的血管内皮细胞凋亡[55]。综上,let-7a的高表达和tnfaip3的低表达在igav血管内皮细胞凋亡中起关键作用。

4. 治疗

4.1. 类固醇及免疫抑制剂治疗

igav通常是自限性的,其主要的治疗方法是支持和对症治疗,如缓解疼痛、充分补水和充分休息[58]。预防肾脏炎症的发展是儿童igav的首要任务,因为它提供了一个尝试和改善长期预后的机会窗口。关于igav诊断和治疗的欧洲共识(share倡议)建议,轻度igavn患者口服类固醇为一线方案,二线治疗方案包括硫唑嘌呤(aza)、霉酚酸酯(mmf)和/或脉冲甲基强的松龙及类似方案,以及用于中重度疾病的环磷酰胺(cyc)和环孢素[19] [59] [60]。一项全国性调查显示igavn患儿中,使用类固醇或类固醇联合免疫抑制剂治疗的占75.6%,使用最广泛的方案是单独使用类固醇(34.0%);在免疫抑制剂方面,环磷酰胺最为常见(8.5%),其次是霉酚酸酯(8.3%)、来氟米特(5.1%)、他克莫司(3.4%)和环孢素(3.1%) [61] [62]。有病例报道伴有肾范围蛋白尿的儿童igav患者在接受来氟米特(lef)和皮质类固醇的联合治疗获得了成功[63]。环孢素a和环磷酰胺可有效治疗类固醇无反应的igan患者[64]。环磷酸盐(cyc)也被用于危及生命或器官的igav治疗[3]。就报告了一例难治性胃肠道症状的iga患者,即使类固醇和多种口服免疫抑制剂联合治疗也难以治愈。但在静脉注射环磷酰胺(ivcy)诱导缓解后,患者能够过渡到mmf维持治疗,并保持2年无复发[65]

4.2. 靶向治疗

靶向b细胞耗竭剂利妥昔单抗(rtx)与cd20结合,通过补体和抗体介导的细胞毒性诱导b细胞耗竭,在难治性igav中使用利妥昔单抗实现疾病缓解的成功率很高[19] [66] [67]。靶向释放制剂布地奈德已被证明能够通过以回肠内的peyer’s斑块为靶点来降低gd-iga1水平,从而改善患者的预后。因此,靶向粘膜免疫可以成为igav有效治疗的基础[19]

4.3. 中药治疗

中药在增强免疫力和改善蛋白尿方面具有独特的优势[68]。肾实质细胞如足细胞和肾小管上皮细胞中存在nf-κb信号通路的激活[69]。hu等发现黄连汤可通过抑制nf-κb/nlrp3信号通路的激活,来抑制抑制下游炎症因子的分泌和过度的细胞炎症反应,进而减轻igavn的肾损伤、iga沉积和炎症反应[7]。槐杞黄可能是治疗igavn的一种特殊辅助药物。槐杞黄联合常规药物可显著降低24小时尿蛋白排泄量、尿微量白蛋白水平和尿沉积物中的红细胞计数,增强常规药物对hspn的作用[70]。此外,环磷酰胺(cyp)等常规药物在治疗igavn时会增加肾毒性,而槐杞黄对cyp诱导的肾毒性具有保护作用[70]-[72]。其机制可能是槐杞黄通过降低氧化应激和炎症,促进线粒体功能恢复,抑制mapk/nf-κb通路,起到保护肾脏和减轻肾毒性的作用,弥补了cyp的缺陷,减少炎症损伤,提高体液免疫[70] [72] [73]

4.4. 血浆置换(plex)

igavn以快速进展的肾小球肾炎为表现,尽管进行了积极的免疫抑制治疗,但预后较差。血浆置换涉及血浆的体外去除或交换,血浆包括其抗体成分和循环抗原–抗体复合物。早期开始使用plex与肾脏预后改善有关。有研究表明应用plex的igav患者中,76.3%获得缓解,仅有23.6%的患者进展为eskd [74]。因此,plex对于出现严重症状的igav患者是一种有效的治疗方法,可减轻肾损害,改善临床预后,且不增加不良反应的发生率[2]

4.5. 血液灌流(hp)和静脉注射免疫球蛋白(ivig)

伴有难治性胃肠道(gi)症状的igav患儿,由于其对支持治疗和糖皮质激素的抵抗,一直难以处理,有较高的医疗负担和肾脏受累风险[58]。ivig和hp主要用于有类固醇耐药或依赖性严重并发症的患者,包括坏死性皮炎、严重胃肠道和神经系统症状,zhang等发现平均5次hp治疗后,胃肠道症状均得到缓解,其中1次ivig治疗后症状缓解率为82.35% [58] [75]。zhu等发现与皮质类固醇相比,有胃肠道症状的igav患儿进行hp治疗可有效清除急性期的il-6、tnf-α、mda,降低糖皮质激素用量和肾脏受累率[76]。ma等也指出hp有保护igav患儿肾功能的作用[77]。ivig和hp治疗均能有效减少白细胞,改善难治性胃肠道症状。hp治疗通过体外循环清除血液中的免疫复合物和炎症因子,但在维持低龄儿童血流动力学稳定方面有其缺点,因此适用于在血流动力学稳定的患者中倾向于减少复发率、费用和类固醇暴露,而ivig的费用随着体重的增加而增加,更适用于体重较轻、年龄较小的患者。综上,适当的体重是确定ivig还是hp更合适的理想阈值[58]

4.6. 扁桃体切除术

有报道称慢性扁桃体炎和其他耳鼻喉疾病可能与紫癜复发有关[78]。扁桃体具有调节粘膜免疫的作用,抗原暴露后,扁桃体可上调聚合iga的产生,在igav易感个体中,可增强gd-iga的产生。有假设认为扁桃体切除术可以通过改善紫癜外观、减轻腹痛和降低尿蛋白/肌酐来改善患者的预后。然而,这是一种侵入性手术,有关机制及治疗方案还需进一步的研究[19] [79] [80]

4.7. 罕见并发症的治疗

4.7.1. 周围神经病变

周围神经病变是igav的罕见并发症,有时可能很严重。有报道称一个在随访期间发展为左胫神经轴突变性的igav患儿,在大剂量固醇治疗和ivig治疗后未见好转,给予单剂量环磷酰胺丸治疗,症状开始改善并在一周内消失。虽然周围神经病变是igav的罕见并发症,但它可能具有耐药性,对强化类固醇治疗和ivig无反应的患者应牢记环磷酰胺治疗[81]

4.7.2. 水痘带状疱疹病毒(vzv)相关弥散性血管内凝血(dic)

水痘是一种由水痘带状疱疹病毒(vzv)感染引起的急性传染病。免疫功能低下的患者或需要使用皮质类固醇或免疫抑制剂的个体可能更易感染vzv,vzv感染可导致包括弥散性血管内凝血(dic)在内的严重并发症,进而危及生命[82]。有研究发现接受类固醇治疗的患者患严重水痘的风险是普通人群的178倍[83]。有报道称一名8岁女孩在初次诊断为igav并累及肾脏和胃肠道系统(gis)后24天发生儿童继发性水痘相关dic。在经过静脉注射γ-免疫球蛋白联合连续肾脏替代治疗crrt加血浆置换等综合治疗后患儿终于康复,随访约2年未见复发。判断可能是甲基强的松龙治疗引起免疫抑制,从而促进了严重vzv感染的再激活或获得,导致dic。这提醒我们,接受皮质类固醇治疗的igav患者可能有罹患危及生命的继发性水痘相关dic并伴有严重血小板减少症和多器官功能障碍综合征的风险。早期发现水痘感染和dic,及时联合抗病毒、免疫球蛋白输注、血浆置换和其他改善凝血功能的综合治疗,同时逐渐停止使用类固醇,对挽救患者生命至关重要[82]

5. 结论

igav是一种自限性疾病,可导致多器官多系统受累,甚至产生急性胃肠道症状、肾功能恶化进而危及生命。其发生发展可能是多种因素共同作用的结果,多个血清及尿液标志物有助于早期识别疾病的发生,治疗方法仍以类固醇及免疫抑制剂为主,对于严重或难治性并发症可考虑血液灌流等其他方法。对于igav的早期识别和诊治尤为重要,本文就igav的病因、生物标志物及发生机制以及治疗加以总结,为儿童igav防治方面提供了新的临床思路,但由于笔者对igav的研究有限,有关病因、机制及治疗还需更深入的研究。相信随着医学技术的发展,igav的病因、发生机制及防治一定会有更有效的临床方法。

参考文献

[1] chen, x., tu, l., tang, q., huang, l. and qin, y. (2022) an emerging role for neutrophil extracellular traps in iga vasculitis: a mini-review. frontiers in immunology, 13, article 912929.
[2] türkmen, ş., taşar, s., güzel, m., sönmez, h.e., çakan, m. and sözeri, b. (2023) a rare complication of iga vasculitis: renal and intestinal ischemia successfully treated with plasmapheresis. the turkish journal of pediatrics, 65, 868-873.
[3] neumann, t. (2022) update immunglobulin-a-vaskulitis. zeitschrift für rheumatologie, 81, 305-312.
[4] xu, l., li, y. and wu, x. (2022) iga vasculitis update: epidemiology, pathogenesis, and biomarkers. frontiers in immunology, 13, article 912864.
[5] zhu, z., zhang, t., chang, s., ren, z. and zhang, q. (2023) azgp1 as a potential biomarker of iga vasculitis with nephritis in a children‑based urinary proteomics study by diapasef. molecular medicine reports, 28, article no. 157.
[6] shi, d., chan, h., yang, x., zhang, g., yang, h., wang, m., et al. (2019) risk factors associated with iga vasculitis with nephritis (henoch-schönlein purpura nephritis) progressing to unfavorable outcomes: a meta-analysis. plos one, 14, e0223218.
[7] hu, l., li, l., che, h., zhao, b., xiao, l., liu, p., et al. (2024) huanglian decoction treats henoch-schonlein purpura nephritis by inhibiting nf-κb/nlrp3 signaling pathway and reducing renal iga deposition. anais da academia brasileira de ciências, 96, e20220970.
[8] parums, d.v. (2024) a review of iga vasculitis (henoch-schönlein purpura) past, present, and future. medical science monitor, 30, e943912.
[9] qin, j., zhang, l., ke, b., liu, t., kong, c. and jin, c. (2023) causal relationships between circulating inflammatory factors and iga vasculitis: a bidirectional mendelian randomization study. frontiers in immunology, 14, article 1248325.
[10] wen, m., dang, x., feng, s., he, q., li, x., liu, t., et al. (2022) integrated analyses of gut microbiome and host metabolome in children with henoch-schönlein purpura. frontiers in cellular and infection microbiology, 11, article 796410.
[11] hu, x., fan, r., song, w., qing, j., yan, x., li, y., et al. (2022) landscape of intestinal microbiota in patients with iga nephropathy, iga vasculitis and kawasaki disease. frontiers in cellular and infection microbiology, 12, article 1061629.
[12] batu, e.d., sener, s., ozomay baykal, g., arslanoglu aydin, e., et al. (2023) the characteristics of patients with covid-19-associated pediatric vasculitis: an international, multicenter study. arthritis & rheumatology, 75, 499-506.
[13] blumberg, s. (1980) a possible association between influenza vaccination and small-vessel vasculitis. archives of internal medicine, 140, 847-848.
[14] casini, f., magenes, v.c., de sanctis, m., gattinara, m., pandolfi, m., cambiaghi, s., et al. (2022) henoch-schönlein purpura following covid-19 vaccine in a child: a case report. italian journal of pediatrics, 48, article no. 158.
[15] hashizume, h., ajima, s. and ishikawa, y. (2022) immunoglobulin a vasculitis post-severe acute respiratory syndrome coronavirus 2 vaccination and review of reported cases. the journal of dermatology, 49, 560-563.
[16] urganci, n., sakar, m., yalcín, o. and kalyoncu, d. (2022) henoch-schönlein purpura induced by infliximab for crohn’s disease: a case report and literature review. revista de gastroenterología de méxico (english edition), 87, 110-112.
[17] ruan, j.w., fan, g.z., niu, m.m., jiang, q., li, r.x., qiu, z., et al. (2022) serum immunoglobulin profiles in chinese children with henoch-schönlein purpura. scandinavian journal of immunology, 96, e13191.
[18] marro, j., chetwynd, a.j., edwards, s., wright, r.d. and oni, l. (2022) increased urinary iga in paediatric iga vasculitis nephritis. international journal of molecular sciences, 23, article 14548.
[19] williams, c.e.c., lamond, m., marro, j., chetwynd, a.j. and oni, l. (2023) a narrative review of potential drug treatments for nephritis in children with iga vasculitis (hsp). clinical rheumatology, 42, 3189-3200.
[20] held, m., kozmar, a., sestan, m., turudic, d., kifer, n., srsen, s., et al. (2024) insight into the interplay of gd-iga1, hmgb1, rage and pcdh1 in iga vasculitis (igav). international journal of molecular sciences, 25, article 4383.
[21] takeuchi, s., kawakami, t., okano, t., shida, h., nakazawa, d., tomaru, u., et al. (2021) elevated myeloperoxidase-dna complex levels in sera of patients with iga vasculitis. pathobiology, 89, 23-28.
[22] brinkmann, v., reichard, u., goosmann, c., fauler, b., uhlemann, y., weiss, d.s., et al. (2004) neutrophil extracellular traps kill bacteria. science, 303, 1532-1535.
[23] chen, x., tu, l., tang, q., zou, j., yun, x. and qin, y. (2023) dnase i targeted degradation of neutrophil extracellular traps to reduce the damage on igav rat. plos one, 18, e0291592.
[24] malíčková, k., ďuricová, d., bortlík, m., hrušková, z., svobodová, b., machková, n., et al. (2011) impaired deoxyribonuclease i activity in patients with inflammatory bowel diseases. autoimmune diseases, 2011, 1-5.
[25] leffler, j., martin, m., gullstrand, b., tydén, h., lood, c., truedsson, l., et al. (2012) neutrophil extracellular traps that are not degraded in systemic lupus erythematosus activate complement exacerbating the disease. the journal of immunology, 188, 3522-3531.
[26] jia, x., zhu, z., miao, j., zhang, l., li, x., bao, y., et al. (2022) serum syndecan-1 levels in patients with immunoglobulin a vasculitis in children. jornal de pediatria, 98, 526-532.
[27] muslu, a., islek, i., gok, f., aliyazicioglu, y., dagdemir, a., dundaroz, r., et al. (2002) endothelin levels in henoch-schonlein purpura. pediatric nephrology, 17, 920-925.
[28] fessatou, s., nicolaidou, p., gourgiotis, d., georgouli, h., douros, k., moustaki, m., et al. (2008) endothelin 1 levels in relation to clinical presentation and outcome of henoch schonlein purpura. bmc pediatrics, 8, article no. 33.
[29] noce, a., fabrini, r., dessì, m., bocedi, a., santini, s., rovella, v., et al. (2013) erythrocyte glutathione transferase activity: a possible early biomarker for blood toxicity in uremic diabetic patients. acta diabetologica, 51, 219-224.
[30] tesauro, m., nisticò, s., noce, a., tarantino, a., marrone, g., costa, a., et al. (2015) the possible role of glutathione-s-transferase activity in diabetic nephropathy. international journal of immunopathology and pharmacology, 28, 129-133.
[31] frkovic, m., turcic, a., gagro, a., srsen, s., frkovic, s.h., rogic, d., et al. (2024) erythrocyte glutathione s-transferase activity as a sensitive marker of kidney function impairment in children with iga vasculitis. international journal of molecular sciences, 25, article 3795.
[32] zhang, l., lin, q., jiang, l., wu, m., huang, l., quan, w., et al. (2022) increased circulating innate lymphoid cell (ilc)1 and decreased circulating ilc3 are involved in the pathogenesis of henoch-schonlein purpura. bmc pediatrics, 22, article no. 201.
[33] klose, c.s.n. and artis, d. (2016) innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. nature immunology, 17, 765-774.
[34] bar‐ephraïm, y.e. and mebius, r.e. (2016) innate lymphoid cells in secondary lymphoid organs. immunological reviews, 271, 185-199.
[35] rangarajan, s., richter, j.r., richter, r.p., bandari, s.k., tripathi, k., vlodavsky, i., et al. (2020) heparanase-enhanced shedding of syndecan-1 and its role in driving disease pathogenesis and progression. journal of histochemistry & cytochemistry, 68, 823-840.
[36] schmitt, r. (2018) zag—a novel biomarker for cardiovascular risk in esrd patients? kidney international, 94, 858-860.
[37] sörensen-zender, i., bhayana, s., susnik, n., rolli, v., batkai, s., baisantry, a., et al. (2015) zinc-α2-glycoprotein exerts antifibrotic effects in kidney and heart. journal of the american society of nephrology, 26, 2659-2668.
[38] schmitt, r., marlier, a. and cantley, l.g. (2008) zag expression during aging suppresses proliferation after kidney injury. journal of the american society of nephrology, 19, 2375-2383.
[39] liu, y., wen, m., he, q., dang, x., feng, s., liu, t., et al. (2022) lipid metabolism contribute to the pathogenesis of iga vasculitis. diagnostic pathology, 17, article no. 28.
[40] elblehi, s.s., hafez, m.h. and el-sayed, y.s. (2019) l-α-phosphatidylcholine attenuates mercury-induced hepato-renal damage through suppressing oxidative stress and inflammation. environmental science and pollution research, 26, 9333-9342.
[41] lee, h.s., kim, b.k., nam, y., sohn, u.d., park, e.s., hong, s.a., et al. (2013) protective role of phosphatidylcholine against cisplatin-induced renal toxicity and oxidative stress in rats. food and chemical toxicology, 58, 388-393.
[42] liu, l., liu, h., zhu, k., zhang, l., yin, x., han, l., et al. (2023) proteome analysis reveals novel serum biomarkers for henoch-schönlein purpura in chinese children. journal of proteomics, 276, article 104841.
[43] zhu, w., liu, m., wang, g., peng, b., yan, y., che, j., et al. (2014) fibrinogen alpha chain precursor and apolipoprotein a-i in urine as biomarkers for noninvasive diagnosis of calcium oxalate nephrolithiasis: a proteomics study. biomed research international, 2014, 1-8.
[44] davalos, d. and akassoglou, k. (2011) fibrinogen as a key regulator of inflammation in disease. seminars in immunopathology, 34, 43-62.
[45] batnožić varga, m. (2023) association between high mobility group box 1 protein gene (rs41369348) polymorphism and immunoglobulin a vasculitis in children. acta clinica croatica, 62, 25-35.
[46] filleron, a., cezar, r., fila, m., protsenko, n., van den hende, k., jeziorski, e., et al. (2024) regulatory t and b cells in pediatric henoch-schönlein purpura: friends or foes? arthritis research & therapy, 26, article no. 52.
[47] jia, x., zhu, h., jiang, q., gu, j., yu, s., chi, x., et al. (2023) identification of key genes and imbalance of immune cell infiltration in immunoglobulin a associated vasculitis nephritis by integrated bioinformatic analysis. frontiers in immunology, 14, article 1087293.
[48] xu, y., huang, x., wang, y., zheng, l., li, m., dai, y., et al. (2023) development of henoch-schoenlein purpura in a child with idiopathic hypereosinophilia syndrome with multiple thrombotic onset: a case report. world journal of clinical cases, 11, 952-961.
[49] sonoda, e., matsumoto, r., hitoshi, y., ishii, t., sugimoto, m., araki, s., et al. (1989) transforming growth factor beta induces iga production and acts additively with interleukin 5 for iga production. the journal of experimental medicine, 170, 1415-1420.
[50] ma, x., nakayamada, s. and wang, j. (2021) multi-source pathways of t follicular helper cell differentiation. frontiers in immunology, 12, article 621105.
[51] jen, h., chuang, y., lin, s., chiang, b. and yang, y. (2011) increased serum interleukin-17 and peripheral th17 cells in children with acute henoch-schönlein purpura. pediatric allergy and immunology, 22, 862-868.
[52] jiang, m., dai, j., jiang, c., pan, y., ren, m. and xing, m. (2023) long noncoding rna meg8 induces an imbalance of th17/treg cells through the mir-107/stat3 axis in henoch-schonlein purpura rats. aging, 15, 13854-13864.
[53] xia, l., chen, m., zhang, h., zheng, x., bao, j., gao, j., et al. (2022) genome-wide association study of 7661 chinese han individuals and fine-mapping major histocompatibility complex identifies hla-drb1 as associated with iga vasculitis. journal of clinical laboratory analysis, 36, e24457.
[54] held, m., stingl jankovic, k., sestan, m., sapina, m., kifer, n., srsen, s., et al. (2024) hla polymorphisms and clinical manifestations in iga vasculitis. international journal of molecular sciences, 25, article 882.
[55] cui, m., liu, j., geng, l., li, q. and xi, l. (2022) let-7a targeting tnfapi3 promotes vascular endothelial cell apoptosis of pediatric patients with henoch-schönlein purpura via nf-κb signaling pathway. journal of healthcare engineering, 2022, 1-10.
[56] matsushita, h., morishita, r., nata, t., aoki, m., nakagami, h., taniyama, y., et al. (2000) hypoxia-induced endothelial apoptosis through nuclear factor-κb (nf-κb)-mediated bcl-2 suppression. circulation research, 86, 974-981.
[57] gholinejad, z., khadem ansari, m.h. and rasmi, y. (2019) titanium dioxide nanoparticles induce endothelial cell apoptosis via cell membrane oxidative damage and p38, pi3k/akt, nf-κb signaling pathways modulation. journal of trace elements in medicine and biology, 54, 27-35.
[58] zhang, x., che, r., xu, h., ding, g., zhao, f., huang, s., et al. (2022) hemoperfusion and intravenous immunoglobulins for refractory gastrointestinal involvement in pediatric henoch-schönlein purpura: a single-center retrospective cohort study. bmc pediatrics, 22, article no. 692.
[59] ozen, s., marks, s.d., brogan, p., groot, n., de graeff, n., avcin, t., et al. (2019) european consensus-based recommendations for diagnosis and treatment of immunoglobulin a vasculitis—the share initiative. rheumatology, 58, 1607-1616.
[60] penido, m.g.m.g. and palma, l.m.p. (2022) iga vasculitis in children. brazilian journal of nephrology, 44, 3-5.
[61] zhong, x. and ding, j. (2022) diagnosis and treatment of iga nephropathy and iga vasculitis nephritis in chinese children. pediatric nephrology, 38, 1707-1715.
[62] working group for national survey on status of diagnosis and treatment of childhood renal disease (2013) multi-center investigation of diagnosis and treatment of henoch-schonlein purpura nephritis in childhood. chinese journal of contemporary pediatrics, 51, 881-887.
[63] hou, l., zhang, z. and du, y. (2021) leflunomide therapy for iga vasculitis with nephritis in children. bmc pediatrics, 21, article no. 391.
[64] kara, m.a., kiliç, b.d., büyükçelik, m. and balat, a. (2022) renal biopsy in children with iga vasculitis. brazilian journal of nephrology, 44, 48-57.
[65] miki, h., tsuboi, h., kawashima, f., sugita, t., nishiyama, t., kuroda, y., et al. (2024) multidrug-resistant iga vasculitis with gastrointestinal symptoms successfully treated with intravenous cyclophosphamide and maintained with mycophenolate mofetil. internal medicine, 63, 743-747.
[66] di gaetano, n., cittera, e., nota, r., vecchi, a., grieco, v., scanziani, e., et al. (2003) complement activation determines the therapeutic activity of rituximab in vivo. the journal of immunology, 171, 1581-1587.
[67] hernández-rodríguez, j., carbonell, c., mirón-canelo, j., diez-ruiz, s., marcos, m. and chamorro, a.j. (2020) rituximab treatment for iga vasculitis: a systematic review. autoimmunity reviews, 19, article 102490.
[68] xue, x., liu, x., lu, c., jin, x., liu, q., wang, x., et al. (2021) chinese patent herbal medicine huaiqihuang for henoch-schonlein purpura nephritis in children: a systematic review of randomized controlled trials. bmc complementary medicine and therapies, 21, article no. 278.
[69] markó, l., vigolo, e., hinze, c., park, j., roël, g., balogh, a., et al. (2016) tubular epithelial nf-κb activity regulates ischemic aki. journal of the american society of nephrology, 27, 2658-2669.
[70] liu, q., liu, j., du, y., guo, w., mi, j. and guo, y. (2022) network pharmacology and molecular docking analysis to explore the mechanism of huaiqihuang-mediated alleviation of henoch-schönlein purpura nephritis. biomed research international, 2022, 1-13.
[71] ahlmann, m. and hempel, g. (2016) the effect of cyclophosphamide on the immune system: implications for clinical cancer therapy. cancer chemotherapy and pharmacology, 78, 661-671.
[72] zhang, y., chang, j., gao, h., qu, x., zhai, j., tao, l., et al. (2021) huaiqihuang (hqh) granule alleviates cyclophosphamide-induced nephrotoxicity via suppressing the mapk/nf-κb pathway and nlrp3 inflammasome activation. pharmaceutical biology, 59, 1423-1429.
[73] zhang, x., cheng, y., zhou, q., huang, h., dong, y., yang, y., et al. (2020) the effect of chinese traditional medicine huaiqihuang (hqh) on the protection of nephropathy. oxidative medicine and cellular longevity, 2020, 1-10.
[74] nguyen, b., acharya, c., tangpanithandee, s., miao, j., krisanapan, p., thongprayoon, c., et al. (2023) efficacy and safety of plasma exchange as an adjunctive therapy for rapidly progressive iga nephropathy and henoch-schönlein purpura nephritis: a systematic review. international journal of molecular sciences, 24, article 3977.
[75] subspecialty group of immunology, society of pediatrics, chinese medical association and editorial board of chinese journal of pediatrics (2013) evidence-based recommendations for the diagnosis and management in the children with henoch-schönlein purpura. chinese journal of pediatrics, 51, 502-507.
[76] zhu, y., dong, y., wu, l. and deng, f. (2019) changes of inflammatory mediators and oxidative stress indicators in children with henoch-schönlein purpura and clinical effects of hemoperfusion in the treatment of severe henoch-schönlein purpura with gastrointestinal involvement in children. bmc pediatrics, 19, article no. 409.
[77] ma, d.q., li, y., han, z.g., et al. (2017) analysis on kidney injury-related clinical risk factors and evaluation on the therapeutic effects of hemoperfusion in children with henoch-schönlein purpura. european review for medical and pharmacological sciences, 21, 3894-3899.
[78] yan, m., wang, z., niu, n., zhao, j. and peng, j. (2015) relationship between chronic tonsillitis and henoch-schönlein purpura. international journal of clinical and experimental medicine, 8, 14060-14064.
[79] song, y., huang, x., yu, g., qiao, j., cheng, j., wu, j., et al. (2021) pathogenesis of iga vasculitis: an up-to-date review. frontiers in immunology, 12, article 771619.
[80] akpinar, m.e., kocak, i., gurpinar, b. and ozturk, b. (2009) henoch-schönlein purpura after adenotonsillectomy. otolaryngology-head and neck surgery, 141, 149-150.
[81] aydın, f., kurt, t., ünlü, e., tekin, z.e., çelikel, e. and acar, b.ç. (2022) steroid-resistant peripheral neuropathy in a child: a rare finding in immunoglobulin a vasculitis. the turkish journal of pediatrics, 64, 576-579.
[82] jiang, j., liao, k., guo, h. and chen, x. (2023) varicella-associated disseminated intravascular coagulation secondary to henoch-schönlein purpura with renal and gastrointestinal system involvement in a child: a case report. medicine, 102, e36203.
[83] dowell, s.f. and bresee, j.s. (1993) severe varicella associated with steroid use. pediatrics, 92, 223-228.
为你推荐
凯发国际一触即发的友情链接
网站地图