稀疏相位检索问题的光滑化方法研究-凯发国际一触即发

稀疏相位检索问题的光滑化方法研究
research on smoothing method for sparse phase retrieval problems
doi: , , ,    国家自然科学基金支持
作者: 刘晓佳, 彭定涛*:贵州大学,数学与统计学院,贵州 贵阳
关键词: ;;;;;;;
摘要: 对稀疏相位检索问题,本文建立了稀疏最小一乘优化模型。首先,将不连续的稀疏正则函数松弛为连续的capped-l1正则函数。利用方向导数和方向稳定点建立了该松弛问题的一阶最优性条件。进一步,分析了方向稳定点的下界性质,并建立了松弛问题与原始问题全局解的等价性。最后,本文建议采用光滑化方法求解该问题。构造了目标函数的光滑化函数,并建立了光滑问题与松弛问题解的一致性,为使用光滑化方法求解该问题提供了理论保证。
abstract: for sparse phase retrieval problems, this paper constructed a class of sparse least absolute deviation optimization model. first, we used the continuous capped-l1 regularization function to relax the discontinuous sparsity function. by virtue of directional derivatives and the directional stationary points, we provided the first- order optimality condition for the relaxed optimization problem. furthermore, we derived the lower bound property of the directional stationary points, based on which we proved the equivalence between the original problem and the relaxed problem in the sense of global solutions. finally, we advised using smoothing methods to solve the relaxed problem. we proposed a class of smooth function to approximate the objective function, and established the consistency of the solutions of the smoothing problem and the relaxed problem. our result provides a theoretical basis for using smoothing methods to solve sparse phase retrieval problems.
文章引用:刘晓佳, 彭定涛. 稀疏相位检索问题的光滑化方法研究[j]. 应用数学进展, 2021, 10(11): 3850-3864.

参考文献

[1] harrison, r. (1993) phase problem in crystallography. journal of the optical society of amer- ica a, 10, 1046-1055.
[2] miao, j., ishikawa, t. and shen, q. (2008) extending x-ray crystallography to allow the imaging of noncrystalline materials, cells, and single protein complexes. annual review of physical chemistry, 59, 387-410.
[3] bunk, o., diaz, a. and pfeiffer, f. (2014) diffractive imaging for periodic samples: retrieving one-dimensional concentration profiles across microfluidic channels. acta crystallographica section a: foundations of crystallography, 63, 306-314.
[4] dainty, j. and fienup, j. (1987) phase retrieval and image reconstruction for astronomy. in: stark, h., ed., image recovery: theory and application, academic press, san diego, 231-275.
[5] cai, t., li, x. and ma, z. (2016) optimal rates of convergence for noisy sparse phase retrieval via thresholded wirtinger flow. the annals of statistics, 44, 2221-2251.
[6] sun, j., qu, q. and wright, j. (2018) a geometric analysis of phase retrieval. foundations of computational mathematics, 18, 1131-1198.
[7] shechtman, y., beck, a. and eldar, y. (2014) gespar: efficient phase retrieval of sparse signals. ieee transactions on signal processing, 62, 928-938.
[8] cand`es, e., li, x. and soltanolkotabi, m. (2015) phase retrieval via wirtinger flow: theory and algorithms. ieee transactions on information theory, 61, 1985-2007.
[9] yang, z., yang, l., fang, e., et al. (2019) misspecified nonconvex statistical optimization for sparse phase retrieval. mathematical programming, 176, 545-571.
[10] davis, d., drusvyatskiy, d. and paquette, c. (2020) the nonsmooth landscape of phase retrieval. ima journal of numerical analysis, 40, 2652-2695.
[11] eldar, y. and mendelson, s. (2013) phase retrieval: stability and recovery guarantees. applied and computational harmonic analysis, 36, 473-494.
[12] duchi, j. and ruan, f. (2019) solving (most) of a set of quadratic equalities: composite optimization for robust phase retrieval. information and inference: a journal of the ima, 8, 471-529.
[13] peng, d. and chen, x. (2020) computation of second-order directional stationary points for group sparse optimization. optimization methods and software, 35, 348-376.
[14] le, t., pham, d., le, h., et al. (2015) approximation approaches for sparse optimization. european journal of operational research, 244, 26-46.
[15] pang, j., razaviyayn, m. and alvarado, a. (2017) computing b-stationary points of nons- mooth dc programs. mathematics of operations research, 42, 95-118.
[16] gong, p., zhang, c., lu, z., et al. (2013) a general iterative shrinkage and thresholding algorithm for nonconvex regularized optimization problems. proceedings of the 30th inter- national conference on machine learning, 28, 37-45.
[17] bian, w. and chen, x. (2020) a smoothing proximal gradient algorithm for nonsmooth convex regression with cardinality penalty. siam journal on numerical analysis, 58, 858- 883.
[18] ahn, m., pang, j. and xin, j. (2017) difference-of-convex learning: directional stationarity, optimality, and sparsity. siam journal on optimization, 27, 1637-1665.
[19] cui, y., pang, j. and sen, b. (2018) composite difference-max programs for modern statis- tical estimation problems. siam journal on optimization, 28, 3344-3374.
[20] soubies, e., blanc-f´eraud, l. and aubert, g. (2017) a unified view of exact continuous penalties for l2 − l0 minimization. siam journal on optimization, 27, 2034-2060.
[21] 彭定涛, 唐琦, 张弦. 组稀疏优化问题精确连续capped-l1松弛[j]. 数学学报, 2021.
[22] 高岩. 非光滑优化[m]. 北京: 科学出版社, 2008.
[23] clarke, f. (1990) optimization and nonsmooth analysis. wiley, new york.
为你推荐
凯发国际一触即发的友情链接
网站地图