带有 yukawa 位势的 keller-凯发国际一触即发

带有 yukawa 位势的 keller-segel 系统l1–解的全局存在性
global existence of l1–solutionsfor the keller{segel systemwith yukawa potential
doi: , ,   
作者: 李雅玲:福建师范大学,数学与统计学院,福建 福州
关键词: ;;;;;;;
摘要: 本文研究了ℝ2中带有 yukawa 位势的抛物–椭圆型 keller–segel 系统 l1– 解的全局存在性。 文章将wei的单调性方法推广至 γ > 0 的系统,对总质量 m ≤ 8π 情况下解的全局存在性给出一个 证明。
abstract: in this paper, we study the global existence of l1–solutions for the parabolic{elliptic keller{segel system with yukawa potential in ℝ2. we give a proof of the global existence of solutions with total mass m ≤ 8π. the proof is based on extending the monotonicity method of wei to γ > 0 system.
文章引用:李雅玲. 带有 yukawa 位势的 keller-segel 系统l1–解的全局存在性[j]. 理论数学, 2024, 14(2): 770-782.

参考文献

[1] lieb, e. and loss, m. (2001) analysis: vol. 14. 2nd edition, american mathematical society, providence, ri.
[2] patlak, c.s. (1953) random walk with persistence and external bias. the bulletin of math-ematical biophysics, 15, 311-338.
[3] keller, e.f. and segel, l.a. (1970) initiation of slime mold aggregation viewed as an instability. journal of theoretical biology, 26, 399-415.
[4] bellomo, n., bellouquid, a., tao, y., et al. (2015) toward a mathematical theory of keller- segel models of pattern formation in biological tissues. mathematical models and methods in applied sciences, 25, 1663-1763.
[5] biler, p. (2020) singularities of solutions to chemotaxis systems. de gruyter, berlin.
[6] arumugam, g. and tyagi, j. (2021) keller-segel chemotaxis models: a review. acta appli- candae mathematicae, 171, article no. 6.
[7] horstmann, d. (2003) from 1970 until present: the keller-segel model in chemotaxis and its consequences. i. jahresbericht der deutschen mathematiker-vereinigung, 105, 103-165.
[8] jager, w. and luckhaus, s. (1992) on explosions of solutions to a system of partial differential equations modelling chemotaxis. transactions of the american mathematical society, 329, 819-824.
[9] nagai, t. (1995) blow-up of radially symmetric solutions to a chemotaxis system. advances in mathematical sciences and applications, 5, 581-601.
[10] dolbeault, j. and perthame, b. (2004) optimal critical mass in the two dimensional keller- segel model in r2. comptes rendus mathematique, 339, 611-616.
[11] blanchet, a., dolbeault, j. and perthame, b. (2006) two-dimensional keller-segel model: optimal critical mass and qualitative properties of the solutions. electronic journal of dif- ferential equations, 2006, 1-33.
[12] biler, p., karch, g., laurencot, p., et al. (2006) the 8π-problem for radially symmetric solutions of a chemotaxis model in the plane. mathematical methods in the applied sciences, 29, 1563-1583.
[13] blanchet, a., carrillo, j.a. and masmoudi, n. (2008) infinite time aggregation for the critical patlak-keller-segel model in r2. communications on pure and applied mathematics, 61, 1449-1481.
[14] kozono, h. and sugiyama, y. (2008) local existence and finite time blow-up of solutions in the 2-d keller-segel system. journal of evolution equations, 8, 353-378.
[15] wei, d. (2018) global well-posedness and blow-up for the 2-d patlak-keller-segel equation. journal of functional analysis, 274, 388-401.
为你推荐
凯发国际一触即发的友情链接
网站地图