非他汀类降低低密度胆固醇药物简述-凯发国际一触即发

非他汀类降低低密度胆固醇药物简述
brief overview of statins for lowering low-density lipid cholesterol
doi: , , html, ,   
作者: 唐素臣, :右江民族医学院附属医院心血管内科,广西 百色
关键词: ;;;;;;;;;
摘要: 低密度脂蛋白胆固醇(low density lipoprotein cholesterol, ldl-c)是动脉粥样硬化性心血管疾病的致病性危险因素,动脉粥样硬化是心血管死亡的主要原因。因此,降低ldl-c水平是预防心血管疾病的主要目标。主要用他汀类药物降低血浆胆固醇水平。尽管使用他汀类药物最大剂量治疗,ldl-c降低水平仍不达标,仍存在与血脂相关的心血管风险,各种不良事件增加。目前,研究和开发了几种非他汀类药物,其作用机制与他汀类药物相辅相成,其目的是降低血浆胆固醇水平。
abstract: low-density lipoprotein cholesterol (ldl-c) is a pathogenic risk factor for atherosclerotic cardiovascular diseases, which are the leading cause of cardiovascular mortality. therefore, reducing ldl-c levels is a primary objective in the prevention of cardiovascular diseases. statin drugs are primarily used to lower plasma cholesterol levels. despite treatment with the maximum dosage of statin drugs, the reduction in ldl-c levels is still not up to standard, and there is still a cardiovascular risk associated with blood lipids, with an increase in various adverse events. at present, several non-statin drugs have been researched and developed, whose mechanisms of action complement those of statin drugs, with the aim of lowering plasma cholesterol levels.
文章引用:唐素臣, 刘政疆. 非他汀类降低低密度胆固醇药物简述[j]. 药物资讯, 2024, 13(5): 422-428.

1. 引言

动脉粥样硬化是一种影响动脉壁的慢性炎症性疾病,其特征是内皮下间隙脂质进行性积累。ldl-c是动脉粥样硬化性心血管疾病的致病性危险因素,动脉粥样硬化是心血管死亡的主要原因[1]。因此,降低ldl-c水平是预防心血管疾病的主要目标。他汀类药物被用作降低血浆胆固醇水平的主要治疗方法[2]

他汀类药物是3-羟基-3-甲基戊二酰辅酶a (hmg-coa)还原酶的竞争性抑制剂,该酶是胆固醇合成途径中的限速酶。随着细胞内胆固醇合成的减少,肝细胞上调表面ldl受体(ldlr)表达,增加ldl的摄取,从而降低循环中ldl-c水平。大量的临床试验已经证实了他汀类药物在一级预防和二级预防中减少心血管发病率和死亡率的有效性[3]。在他汀类药物降脂治疗临床实践中,尽管最大限度地使用他汀类药物治疗,ldl-c降低水平仍不达标,仍存在与血脂相关的心血管风险,各种不良事件增加,包括肌痛、肌炎和横纹肌溶解、肝肾功能不全、血糖升高、肿瘤、认知障碍和眼部疾病等。

目前,针对他汀类药物降脂治疗存在的问题,研究和开发了几种非他汀类药物,其作用机制与他汀类药物相辅相成,其目的是降低血浆胆固醇水平。其中,依折麦布和最近针对pcsk9的单克隆抗体已被批准上市,而其他药物,包括贝派多酸和pcsk9基因沉默技术,正处于临床的后期开发阶段,现分别介绍如下。

2. 非他汀类降胆固醇药物

2.1. 依折麦布

依折麦布通过抑制固醇转运蛋白niemann-pick c1l1 (npc1l1)的作用来减少肠道对胆固醇的吸收。该蛋白质在肠道上皮细胞刷状缘膜上高度表达,在肠道吸收胆固醇和调节血浆胆固醇水平中起着核心作用[4]。与他汀类药物相比,他汀类药物通过抑制胆固醇合成途径,诱导肝脏ldlr上调,导致循环中ldl颗粒摄取增加[5]。其反应过程中反馈作用,导致胆固醇在肠道中吸收增加,影响他汀类药物的疗效。依折麦布作为单药治疗,却通过抑制肠道胆固醇吸收,降低血浆胆固醇水平,与他汀类药物产生互补作用。因此,他汀 依折麦布联合用药将同时减少胆固醇的合成和吸收,进一步降低血浆ldl-c水平,超越了单一使用他汀类药物时的效果。

多项研究表明,ldl-c每降低1.0 mmol/l,平均心血管风险降低22%~23% [6]。事实上,多项临床试验表明,在他汀治疗基础上加用依折麦布可以进一步降低ldl-c水平13%~20%,ldl-c目标的实现率更高[7]。在依折麦布 他汀治疗的糖尿病患者中,ldl-c降低了24.6%,而接受加倍他汀剂量的患者降低了10.9%,接受联合治疗的患者整个血脂谱得到更大程度改善[8]。此外,依折麦布具有理想的药理学特性,具有良好的安全性和耐受性(肌痛和/或转氨酶升高0.1%~1%;肌病 < 0.1%)。年龄、性别或种族对依折麦布药代动力学没有临床显着影响,轻度肝功能损害或轻度至重度肾功能损害患者无需调整剂量,不易受到代谢性药物相互作用的影响,与他汀类药物的联合给药耐受性良好[9]。然而,当最大耐受的他汀类药物剂量无法达到目标ldl-c时,才建议使用该药物[10]

2.2. pcsk9抑制剂

前蛋白转化酶枯草素激酶9 (pcsk9)是一种由肝脏合成分泌的丝氨酸蛋白酶,其基因位于人类1号染色体上,靠近第三个遗传位点,与家族性高胆固醇血症密切相关。其全长约22 kb,由信号肽、前区、催化区和羧基末端组成,参与调节肝脏低密度脂蛋白受体(ldlr)的表达,从而控制血浆ldl-c水平[11] [12]。目前上市的pcsk9抑制剂包括阿利西尤单抗、依洛尤单抗和英克司兰等药物。

pcsk9主要在肝脏、肾脏和肠道中表达,这提出了一个问题,即pcsk9的药理学抑制是否也可能导致具有临床相关性的肝外作用。动物模型中pcsk9缺陷和人类中pcsk9功能缺失突变与新发糖尿病的风险增加有关,表明pcsk9和ldlr在胰岛β细胞的胆固醇代谢中起作用,已有的抗pcsk9单克隆抗体的临床试验数据排除了这一假设[13]-[15]

2.2.1. 依洛尤单抗

多项2期试验表明[16],依洛尤单抗单药或联合降脂治疗(llt)可以有效降低高胆固醇血症患者的ldl-c水平,适用于fh患者和他汀不耐受患者。依洛尤单抗的proficio项目的3期临床试验,旨在评估依洛尤单抗在广泛的高胆固醇血症患者中与安慰剂或依折麦布相比的有效性。在单药治疗中,依洛尤单抗能有效降低ldl-c水平;在中高强度他汀治疗基础上,依洛尤单抗较安慰剂更有效地降低ldl-c水平,与依折麦布组相比,大多数患者ldl-c水平<70 mg/dl。在不同降脂治疗基础上,高胆固醇血症患者加用依洛尤单抗治疗52周也得到了类似的结果,ldl-c水平显著降低57%,且在整个研究期间保持不变[17]。在他汀类药物治疗的患者中依洛尤单抗使动脉粥样硬化体积百分比(pav)的下降[18]

在他汀类药物不耐受患者中pcsk9的疗效得到了验证。在rutherford-2中评估依洛尤单抗对家族性高脂血症(familial hyperlipidemia, hf)患者作用的研究显示,依洛尤单抗治疗fh患者的ldl-c水平显著降低(~60%),其降低ldl-c水平的机制主要是通过上调残余ldlr活性[19]

2022年9月2日更新了iii期fourier开放标签扩展(ole)研究数据的结果显示,依洛尤单抗长期降低血浆ldl-c是安全的,且耐受性良好;与短期治疗相比,可进一步减少心血管事件,该研究包括迄今为止暴露于pcsk9i治疗时间最长的患者。与延迟开始治疗相比,依洛尤单抗长期降低ldl-c可维持8年以上时间,且安全耐受性良好,并导致心血管事件的进一步减少[20]-[23]。这些结果表明,依洛尤单抗可以安全地用于降低高cv风险患者的ldl-c水平和cv事件的风险。

2.2.2. 阿利西尤单抗

阿利西尤单抗是一种针对pcsk9的全人源单克隆抗体,可显著降低服用他汀类药物的患者和/或不使用其他降低ldl-c治疗方法的效果以及fh患者的ldl-c水平(40%至73%),为心血管疾病带来了更大的益处[24]

odyssey计划包括14项关于阿利西尤单抗的3期试验,旨在评估阿利西尤单抗单独使用或与其他降脂疗法联合使用对不同组别的高胆固醇血症患者的疗效和安全性。作为单一疗法,阿利西尤单抗比依折麦布更有效地降低ldl-c水平。在 odyssey long term 试验中,在最大耐受剂量的他汀类药物中添加阿利西尤单抗后,第24周的ldl-c水平降低了61%,并且这种降低持续到第78周(52.4%)。在一项事后分析中,阿利西尤单抗组的重大心血管事件发生率低于安慰剂组(1.7% vs 3.3%),随着时间的推移,事件发生的累积概率曲线趋于发散[25]。odyssey options i和ii试验比较了在阿托伐他汀或瑞舒伐他汀基础上加用阿利西尤单抗、加用依折麦布或他汀剂量加倍的效果;结果显示:加用阿利西尤单抗治疗的患者ldl-c水平降低幅度最大[26]

在odyssey alternative试验中,与依折麦布相比,阿利西尤单抗对他汀类药物不耐受患者的ldl-c降幅更大(第24周时分别为45%和14.6%),达到推荐ldl-c目标的患者比例更高(分别为41.9%对4.4%)。在所有治疗组中骨骼肌相关不良事件最常见,阿利西尤单抗比阿托伐他汀明显较低(hr: 0.61, 95%ci: 0.38~0.99, p = 0.042) [27]。阿利西尤单抗在杂合子家族性高胆固醇血症(hefh)患者ldl-c水平降低方面,疗效显著且时间持久[28]

odyssey outcomes试验结果显示:对于近期发生急性冠脉综合征且ldl-c水平不打标的患者,尽管接受了高强度他汀类药物治疗,使用阿利西优单抗治疗仍可降低其发生cv事件的风险。在中位随访2.8年后,阿利西尤单抗治疗患者的复合主要终点风险显著降低了15%,基线ldl-c水平最高(100 mg/dl)的患者的绝对降低幅度最大。在该研究中,ldl-c水平在4个月时降低62.7%,48个月时降低了54.7% [29]

2023年最新odyssey outcomes研究提示阿利西尤单抗既能早期高强度降脂,停药后依旧可为患者带来持续获益;odyssey outcomes研究设立ldl-c安全临界值(15 mg/dl),未增加安全问题[30]

2.3. 洛美他派

微粒体甘油三酯转移蛋白(mtp)定位于肝细胞和肠细胞的内质网(er),通过将甘油三酯和胆固醇酯从er膜转移到新生的apob而发挥作用。mtp在含载脂蛋白b的脂蛋白,包括极低密度脂蛋白(vldl)和乳糜微粒的组装和分泌中发挥重要作用。mtp(mttp)编码基因的功能缺失突变导致vldl和乳糜微粒合成减少,apob降解增加,循环ldl-c水平降低;基于这些观察,mtp被认为是高胆固醇血症,特别是纯合子型家族性高胆固醇血症(hofh)治疗的一个可能的药理学控制靶点。洛美他派是一种mtp抑制剂,抑制mtp的活性,减少含apo b脂蛋白的产生,减少vldl和乳糜微粒的合成和分泌,其降低ldl-c水平不依赖于ldlr [31]。为那些ldlr功能受损或缺乏的患者提供了一种新的治疗选择。特别考虑用于hofh患者,这类患者由于基因突变导致ldl-c水平极高,传统的他汀类药物往往无法有效控制他们的胆固醇水平。

2012年12月21日洛美他派被美国食品药品管理局(fda)批准上市,用于降低hofh患者ldl-c、tc、apob和non-hdl-c水平。总体上该药耐受性良好,最严重的不良事件是肝脏脂肪堆积,部分患者出现一过性alt、ast升高或两者均升高,经减量或暂时中断治疗成功,与肝功能变化无关。原因是洛美他派抑制mtp活性,降低肝细胞输出脂质(主要是甘油三酯)的功效,因此增加了肝脂肪变性[32]。这种肝脏脂肪增加的临床后果尚不清楚,需要进一步的研究。临床需要仔细监测转氨酶水平和坚持低脂饮食,这可能会最大限度地减少胃肠道副作用。

研究表明,洛美他派可使ldl-c水平降低40%~50% [33]。另外,小剂量洛美他派无论单用或与依折麦布合用,均可对ldl-c未达标的患者进行有效的治疗[34]。另外,洛美他派是cyp3a4的弱抑制剂,可能会降低他汀类药物的代谢,因此在两药合用时需密切监测不良事件[35]

2.4. 米泊美生

载脂蛋白apob是所有致动脉粥样硬化脂蛋白的主要载脂蛋白,其水平升高,是动脉粥样硬化中公认的一个危险因素;强化了降脂治疗的临床获益可能与apob水平的绝对变化成正比的概念。因此,apob可能是一个降低高胆固醇血症的药理学靶点。

在抑制mtp活性的同时,也有可能靶向vldl和ldl的关键结构蛋白,抑制脂蛋白生物合成。米泊美生是一种抑制载脂蛋白b合成的反义寡核苷酸,它与同源mrna结合形成核酸酶的底物,从而导致mrna降解并减少载脂蛋白b和载脂蛋白b脂蛋白的产生。

米泊美生的作用独立于ldlr,因此代表了治疗ldlr突变的hofh的合适方法。米泊美生克作为单药治疗和现有降脂治疗方案的补充。最近一项对13项随机临床试验数据的荟萃分析证实,米泊美生可显著降低~26%的ldl-c水平,并整体改善所有血脂参数。米泊美生长期治疗不仅可以降低ldl-c和其他致动脉粥样硬化脂蛋白水平,还可以降低fh患者cv事件的发生率[36]

米泊美生药物的副作用如注射部位反应、流感样症状、肝脂肪变性和肝酶升高,导致中断治疗的患者数量增加。某研究对接受米泊美生治疗的患者进行肝活检,结果为单纯性脂肪变性,无炎症或纤维化。尽管fda已批准该药物用于hofh治疗,但因其临床不良反应,美国已不再应用。该药物未获准在欧洲使用,因为欧洲药品管理局(ema)的人用药品委员会(cmhp)确定副作用的风险超过了该药物的益处,因此未批准米泊美生上市[37]

notes

*通讯作者。

参考文献

[1] 王增武, 郭远林. 中国血脂管理指南(基层版2024年) [j]. 临床心血管病杂志, 2024, 4(40): 249-256.
[2] di costanzo, a., indolfi, c., sorrentino, s., esposito, g. and spaccarotella, c.a.m. (2023) the effects of statins, ezetimibe, pcsk9-inhibitors, inclisiran, and icosapent ethyl on platelet function. international journal of molecular sciences, 24, article 11739.
[3] 史威力, 李明艳, 段红艳. 《他汀类药物用于成年人心血管疾病的一级预防: 美国预防临床服务指南工作组推荐声明》解读[j]. 中国全科医学, 2024, 27(12): 1405-1412.
[4] wang, l. and song, b. (2012) niemann-pick c1-like 1 and cholesterol uptake. biochimica et biophysica acta (bba) —molecular and cell biology of lipids, 1821, 964-972.
[5] descamps, o.s., de sutter, j., guillaume, m. and missault, l. (2011) where does the interplay between cholesterol absorption and synthesis in the context of statin and/or ezetimibe treatment stand today? atherosclerosis, 217, 308-321.
[6] cholesterol treatment trialists’ (ctt) collaboration (2010) efficacy and safety of more intensive lowering of ldl cholesterol: a meta-analysis of data from 170 000 participants in 26 randomized trials. the lancet, 376, 1670-1681.
[7] choi, h., kang, s., jeong, s., yoon, c., youn, t., song, w.h., et al. (2023) lipid-lowering efficacy of combination therapy with moderate-intensity statin and ezetimibe versus high-intensity statin monotherapy: a randomized, open-label, non-inferiority trial from korea. journal of lipid and atherosclerosis, 12, 277-289.
[8] sakamoto, k., kawamura, m., kohro, t., omura, m., watanabe, t., ashidate, k., et al. (2015) effect of ezetimibe on ldl-c lowering and atherogenic lipoprotein profiles in type 2 diabetic patients poorly controlled by statins. plos one, 10, e0138332.
[9] raschi, e., casula, m., cicero, a.f.g., corsini, a., borghi, c. and catapano, a. (2023) beyond statins: new pharmacological targets to decrease ldl-cholesterol and cardiovascular events. pharmacology & therapeutics, 250, article 108507.
[10] khan, s.u., khan, m.u., rahman, h., khan, m.s., riaz, h., novak, m., et al. (2019) a bayesian network meta-analysis of preventive strategies for contrast-induced nephropathy after cardiac catheterization. cardiovascular revascularization medicine, 20, 29-37.
[11] norata, g.d., tavori, h., pirillo, a., fazio, s. and catapano, a.l. (2016) biology of proprotein convertase subtilisin kexin 9: beyond low-density lipoprotein cholesterol lowering. cardiovascular research, 112, 429-442.
[12] da dalt, l., ruscica, m., bonacina, f., balzarotti, g., dhyani, a., di cairano, e., et al. (2018) pcsk9 deficiency reduces insulin secretion and promotes glucose intolerance: the role of the low-density lipoprotein receptor. european heart journal, 40, 357-368.
[13] perego, c., da dalt, l., pirillo, a., galli, a., catapano, a.l. and norata, g.d. (2019) cholesterol metabolism, pancreatic β-cell function and diabetes. biochimica et biophysica acta (bba)—molecular basis of disease, 1865, 2149-2156.
[14] sahebkar, a. and watts, g.f. (2013) new ldl-cholesterol lowering therapies: pharmacology, clinical trials, and relevance to acute coronary syndromes. clinical therapeutics, 35, 1082-1098.
[15] blom, d.j., fayad, z.a., kastelein, j.j.p., larrey, d., makris, l., schwamlein, c., et al. (2016) lower, a registry of lomitapide-treated patients with homozygous familial hypercholesterolemia: rationale and design. journal of clinical lipidology, 10, 273-282.
[16] giugliano, r.p., desai, n.r., kohli, p., rogers, w.j., somaratne, r., huang, f., et al. (2012) efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 in combination with a statin in patients with hypercholesterolaemia (laplace-timi 57): a randomized, placebo-controlled, dose-ranging, phase 2 study. the lancet, 380, 2007-2017.
[17] nicholls, s.j., puri, r., anderson, t., ballantyne, c.m., cho, l., kastelein, j.j.p., et al. (2016) effect of evolocumab on progression of coronary disease in statin-treated patients. journal of the american medical association, 316, 2373-2384.
[18] raal, f.j., stein, e.a., dufour, r., turner, t., civeira, f., burgess, l., et al. (2015) pcsk9 inhibition with evolocumab (amg 145) in heterozygous familial hypercholesterolaemia (rutherford-2): a randomized, double-blind, placebo-controlled trial. the lancet, 385, 331-340.
[19] o’donoghue, m.l., giugliano, r.p., wiviott, s.d., atar, d., keech, a., kuder, j.f., et al. (2022) long-term evolocumab in patients with established atherosclerotic cardiovascular disease. circulation, 146, 1109-1119.
[20] schludi, b., giugliano, r.p., sabatine, m.s., raal, f.j., teramoto, t., koren, m.j., et al. (2022) time-averaged low-density lipoprotein cholesterol lowering with evolocumab: pooled analysis of phase 2 trials. journal of clinical lipidology, 16, 538-543.
[21] giugliano, r.p., cannon, c.p., blazing, m.a., nicolau, j.c., corbalán, r., špinar, j., et al. (2018) benefit of adding ezetimibe to statin therapy on cardiovascular outcomes and safety in patients with versus without diabetes mellitus. circulation, 137, 1571-1582.
[22] ghouse, j., ahlberg, g., bundgaard, h. and olesen, m.s. (2021) effect of loss-of-function genetic variants in pcsk9 on glycemic traits, neurocognitive impairment, and hepatobiliary function. diabetes care, 45, 251-254.
[23] dufour, r., bergeron, j., gaudet, d., weiss, r., hovingh, g.k., qing, z., et al. (2017) open-label therapy with alirocumab in patients with heterozygous familial hypercholesterolemia: results from three years of treatment. international journal of cardiology, 228, 754-760.
[24] robinson, j.g., farnier, m., krempf, m., bergeron, j., luc, g., averna, m., et al. (2015) efficacy and safety of alirocumab in reducing lipids and cardiovascular events. new england journal of medicine, 372, 1489-1499.
[25] farnier, m., jones, p., severance, r., averna, m., steinhagen-thiessen, e., colhoun, h.m., et al. (2016) efficacy and safety of adding alirocumab to rosuvastatin versus adding ezetimibe or doubling the rosuvastatin dose in high cardiovascular-risk patients: the odyssey options ii randomized trial. atherosclerosis, 244, 138-146.
[26] moriarty, p.m., thompson, p.d., cannon, c.p., guyton, j.r., bergeron, j., zieve, f.j., et al. (2015) efficacy and safety of alirocumab vs ezetimibe in statin-intolerant patients, with a statin rechallenge arm: the odyssey alternative randomized trial. journal of clinical lipidology, 9, 758-769.
[27] farnier, m., hovingh, g.k., langslet, g., dufour, r., baccara-dinet, m.t., din-bell, c., et al. (2018) long-term safety and efficacy of alirocumab in patients with heterozygous familial hypercholesterolemia: an open-label extension of the odyssey program. atherosclerosis, 278, article 307-314.
[28] schwartz, g.g., steg, p.g., szarek, m., bhatt, d.l., bittner, v.a., diaz, r., et al. (2018) alirocumab and cardiovascular outcomes after acute coronary syndrome. new england journal of medicine, 379, 2097-2107.
[29] seidah, n.g., prat, a., pirillo, a., catapano, a.l. and norata, g.d. (2019) novel strategies to target proprotein convertase subtilisin kexin 9: beyond monoclonal antibodies. cardiovascular research, 115, 510-518.
[30] schwartz, g.g., et al. (2023) transiently achieved very low ldl-cholesterol levels by statin and alirocumab after acute coronary syndrome are associated with cardiovascular risk reduction: the odyssey outcomes trial. european heart journal, 44, 1408-1417.
[31] sirtori, c.r., pavanello, c. and bertolini, s. (2014) microsomal transfer protein (mtp) inhibition—a novel approach to the treatment of homozygous hypercholesterolemia. annals of medicine, 46, 464-474.
[32] chen, j., fang, z., luo, q., wang, x., warda, m., das, a., et al. (2024) unlocking the mysteries of vldl: exploring its production, intracellular trafficking, and metabolism as therapeutic targets. lipids in health and disease, 23, article no. 14.
[33] ajufo, e. and rader, d.j. (2016) recent advances in the pharmacological management of hypercholesterolaemia. the lancet diabetes & endocrinology, 4, 436-446.
[34] samaha, f.f., mckenney, j., bloedon, l.t., sasiela, w.j. and rader, d.j. (2008) inhibition of microsomal triglyceride transfer protein alone or with ezetimibe in patients with moderate hypercholesterolemia. nature clinical practice cardiovascular medicine, 5, 497-505.
[35] tuteja, s., duffy, d., dunbar, r.l., movva, r., gadi, r., bloedon, l.t., et al. (2013) pharmacokinetic interactions of the microsomal triglyceride transfer protein inhibitor, lomitapide, with drugs commonly used in the management of hypercholesterolemia. pharmacotherapy: the journal of human pharmacology and drug therapy, 34, 227-239.
[36] duell, p.b., santos, r.d., kirwan, b., witztum, j.l., tsimikas, s. and kastelein, j.j.p. (2016) long-term mipomersen treatment is associated with a reduction in cardiovascular events in patients with familial hypercholesterolemia. journal of clinical lipidology, 10, 1011-1021.
[37] jain, p. (2024) traditional and novel non-statin lipid-lowering drugs. indian heart journal, 76, s38-s43.
为你推荐









凯发国际一触即发的友情链接
网站地图