伪黎曼乘积空间 npm(c)× ℝ中的λ-双调和超曲面
λ-biharmonic hypersurfaces in pseudo-riemannian product space npm(c)× ℝ
doi: ,
, , ,
被引量
国家自然科学基金支持
作者:
孟莹莹*, 杨 超#:西北师范大学数学与统计学院,甘肃 兰州
关键词:
;;;;;;;;;
摘要: 本文主要研究伪黎曼乘积空间npm(c)× ℝ中的λ-双调和超曲面,给出超曲面是λ-双调和的等价方程,证得npm(c)× ℝ中具有常平均曲率且形状算子可对角化的λ-双调和(εm 1λ≥0)超曲面要么是极小的,要么是一个直柱体。利用该结论,在角度函数为常数的假设下,对npm(c)× ℝ中的einstein 型 λ-双调和超曲面进行分类。特别地,我们讨论了(ℍm(c) × ℝ,gn- dt2)中至多具有两个不同主曲率的λ-双调和类空超曲面(mm,g),在角度函数是常数且双曲角a≠0的假设下证得超曲面mm要么是极小的,要么是一个直柱体。
abstract: in this paper, we study the λ-biharmonic hypersurfaces in the pseudo-riemannian product space npm(c)× ℝ, and derive λ-biharmonic equation. it is shown that the λ-biharmonic hypersurfaces (εm 1λ≥0) with constant mean curvature and shape op-
erator can be diagonalizable are either minimal or a vertical cylinder. utilizing this result, the paper classifies einstein-type λ-biharmonic hypersurfaces in npm(c)× ℝ under the assumption of a constant angle function. in particular, it classifies at most two distinct principal curvatures of λ-biharmonic space-like hypersurfaces (mm,g) in (ℍm(c) × ℝ,gn- dt2) , and proves that under the assumption of a constant angle and hyperbolic angle a≠0, the hypersurface mm is either minimal or a vertical cylinder.
文章引用:孟莹莹, 杨超. 伪黎曼乘积空间 npm(c)× ℝ中的λ-双调和超曲面[j]. 理论数学, 2024, 14(10): 147-157.
参考文献
[1]
|
luo, y. and maeta, s. (2017) biharmonic hypersurfaces in a sphere. proceedings of the amer-
ican mathematical society, 145, 3109-3116.
|
[2]
|
maeta, s. and ou, y. (2020) some classifications of biharmonic hypersurfaces with constant
scalar curvature. pacific journal of mathematics, 306, 281-290.
|
[3]
|
ou, y. (2010) biharmonic hypersurfaces in riemannian manifolds. pacific journal of math-
ematics, 248, 217-232.
|
[4]
|
chen, b. (1988) null 2-type surfaces in r3 are circular cylinders. kodai mathematical
journal, 11, 295-299.
|
[5]
|
chen, b. (2011) pseudo-riemannian geometry, δ-invariants and applications.world scientific
publishing.
|
[6]
|
ferrandez, a. and lucas, p. (1991) null finite type hypersurfaces in space forms. kodai
mathematical journal, 14, 406-419.
|
[7]
|
chen, b. and garay, o.j. (2012) δ(2)-ideal null 2-type hypersurfaces of euclidean space are
spherical cylinders. kodai mathematical journal, 35, 382-391.
|
[8]
|
liu, j.-c. and yang, c. (2017) hypersurfaces in ℝsn 1
satisfying δh = λh with at most
two distinct principal curvatures. journal of mathematical analysis and applications, 451,
14-33.
|
[9]
|
yang, c., liu, j.-c. and du, l. (2024) pmcv hypersurfaces in non-flat pseudo-riemannian
space forms. arxiv: 2403.08205v1
|
[10]
|
fu, y., maeta, s. and ou, y. (2021) biharmonic hypersurfaces in a product space lm r.
mathematische nachrichten, 294, 1724-1741.
|
[11]
|
郭强,戴忠柱,商晓辉,乘积空间sn(c)×ℝ中的双调和爱因斯坦超曲面[j]. 高师理科学刊, 2021, 41(8):8-10.
|
[12]
|
赵珍, 杨超. 𝕊m×ℝ与ℍm×ℝ中的λ-双调和超曲面[j]. 理论数学, 2023, 13(12): 3481-3489.
|
[13]
|
albujer, a.l., aledo, j.a. and al[as, l.j. (2010) on the scalar curvature of hypersurfaces
in spaces with a killing field. advances in geometry, 10, 487-503.
|