[1]
|
lee, c., wei, x., kysar, j.w. and hone, j. (2008) measurement of the elastic properties and intrinsic strength of monolayer graphene. science, 321, 385-388.
|
[2]
|
hao, f., fang, d. and xu, z. (2011) mechanical and thermal transport properties of graphene with defects. applied physics letters, 99, article 041901.
|
[3]
|
novoselov, k.s., geim, a.k., morozov, s.v., jiang, d., zhang, y., dubonos, s.v., et al. (2004) electric field effect in atomically thin carbon films. science, 306, 666-669.
|
[4]
|
wang, f., zhang, y., tian, c., girit, c., zettl, a., crommie, m., et al. (2008) gate-variable optical transitions in graphene. science, 320, 206-209.
|
[5]
|
nair, r.r., blake, p., grigorenko, a.n., novoselov, k.s., booth, t.j., stauber, t., et al. (2008) fine structure constant defines visual transparency of graphene. science, 320, 1308-1308.
|
[6]
|
bonaccorso, f., sun, z., hasan, t. and ferrari, a.c. (2010) graphene photonics and optoelectronics. nature photonics, 4, 611-622.
|
[7]
|
balandin, a.a., ghosh, s., bao, w., calizo, i., teweldebrhan, d., miao, f., et al. (2008) superior thermal conductivity of single-layer graphene. nano letters, 8, 902-907.
|
[8]
|
cai, w., moore, a.l., zhu, y., li, x., chen, s., shi, l., et al. (2010) thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. nano letters, 10, 1645-1651.
|
[9]
|
hopkins, p.e., baraket, m., barnat, e.v., beechem, t.e., kearney, s.p., duda, j.c., et al. (2012) manipulating thermal conductance at metal-graphene contacts via chemical functionalization. nano letters, 12, 590-595.
|
[10]
|
foley, b.m., hernández, s.c., duda, j.c., robinson, j.t., walton, s.g. and hopkins, p.e. (2015) modifying surface energy of graphene via plasma-based chemical functionalization to tune thermal and electrical transport at metal interfaces. nano letters, 15, 4876-4882.
|
[11]
|
jiang, t., zhang, x., vishwanath, s., mu, x., kanzyuba, v., sokolov, d.a., et al. (2016) covalent bonding modulated graphene-metal interfacial thermal transport. nanoscale, 8, 10993-11001.
|
[12]
|
han, h., zhang, y., wang, n., samani, m.k., ni, y., mijbil, z.y., et al. (2016) functionalization mediates heat transport in graphene nanoflakes. nature communications, 7, article no. 11281.
|
[13]
|
koh, y.k., bae, m., cahill, d.g. and pop, e. (2010) heat conduction across monolayer and few-layer graphenes. nano letters, 10, 4363-4368.
|
[14]
|
walton, s.g., foley, b.m., hernández, s.c., boris, d.r., baraket, m., duda, j.c., et al. (2017) plasma-based chemical functionalization of graphene to control the thermal transport at graphene-metal interfaces. surface and coatings technology, 314, 148-154.
|
[15]
|
wejrzanowski, t., grybczuk, m., wasiluk, m. and kurzydlowski, k.j. (2015) heat transfer through metal-graphene interfaces. aip advances, 5, article 077142.
|
[16]
|
chen, l., huang, z. and kumar, s. (2013) phonon transmission and thermal conductance across graphene/cu interface. applied physics letters, 103, article 123110.
|
[17]
|
chen, l., huang, z. and kumar, s. (2014) impact of bonding at multi-layer graphene/metal interfaces on thermal boundary conductance. rsc advances, 4, 35852-35861.
|
[18]
|
mao, r., kong, b.d., gong, c., xu, s., jayasekera, t., cho, k., et al. (2013) first-principles calculation of thermal transport in metal/graphene systems. physical review b, 87, article 165410.
|
[19]
|
tao, y., wu, c., qi, h., liu, c., wu, x., hao, m., et al. (2020) the enhancement of heat conduction across the metal/graphite interface treated with a focused ion beam. nanoscale, 12, 14838-14846.
|
[20]
|
malard, l.m., pimenta, m.a., dresselhaus, g. and dresselhaus, m.s. (2009) raman spectroscopy in graphene. physics reports, 473, 51-87.
|
[21]
|
ferrari, a.c. and robertson, j. (2000) interpretation of raman spectra of disordered and amorphous carbon. physical review b, 61, 14095-14107.
|
[22]
|
zhou, y., liao, z., wang, y., duesberg, g.s., xu, j., fu, q., et al. (2010) ion irradiation induced structural and electrical transition in graphene. the journal of chemical physics, 133, article 234703.
|
[23]
|
wang, q., mao, w., ge, d., zhang, y., shao, y. and ren, n. (2013) effects of ga ion-beam irradiation on monolayer graphene. applied physics letters, 103, article 073501.
|
[24]
|
wang, q., shao, y., ge, d., yang, q. and ren, n. (2015) surface modification of multilayer graphene using ga ion irradiation. journal of applied physics, 117, article 165303.
|
[25]
|
al-harthi, s.h., elzain, m., al-barwani, m., kora'a, a., hysen, t., myint, m.t.z., et al. (2012) unusual surface and edge morphologies, sp2 to sp3 hybridized transformation and electronic damage after ar ion irradiation of few-layer graphene surfaces. nanoscale research letters, 7, 1-11.
|
[26]
|
lu, j., bao, y., su, c.l. and loh, k.p. (2013) properties of strained structures and topological defects in graphene. acs nano, 7, 8350-8357.
|