[1]
|
余沛峰, 梁英, 王康旺, 等. 拓扑量子材料用于能源转化与存储的研究进展[j]. 材料研究与应用, 2023, 17(5): 886-901.
|
[2]
|
乔亮波, 张晓虎, 孙现众, 等. 电池-超级电容器混合储能系统研究进展[j]. 储能科学与技术, 2022, 11(1): 98-106.
|
[3]
|
li, x. and zhi, l. (2018) graphene hybridization for energy storage applications. chemical society reviews, 47, 3189-3216.
|
[4]
|
sun, k., hua, f., cui, s., zhu, y., peng, h. and ma, g. (2021) an asymmetric supercapacitor based on controllable wo3 nanorod bundle and alfalfa-derived porous carbon. rsc advances, 11, 37631-37642.
|
[5]
|
zhang, y., pan, h., zhou, q., liu, k., ma, w. and fan, s. (2023) biomass-derived carbon for supercapacitors electrodes—a review of recent advances. inorganic chemistry communications, 153, article 110768.
|
[6]
|
范瑞博, 陈亮, 薛北辰, 等. 生物质基工程生物炭材料应用于超级电容器: 现状、挑战及前景[j/ol]. 能源环境保护, 1-12. , 2024-08-25.
|
[7]
|
wang, y., wei, h., lu, y., wei, s., wujcik, e. and guo, z. (2015) multifunctional carbon nanostructures for advanced energy storage applications. nanomaterials, 5, 755-777.
|
[8]
|
luo, b., liu, s. and zhi, l. (2011) chemical approaches toward graphene-based nanomaterials and their applications in energy-related areas. small, 8, 630-646.
|
[9]
|
meher, s.k., justin, p. and ranga rao, g. (2011) nanoscale morphology dependent pseudocapacitance of nio: influence of intercalating anions during synthesis. nanoscale, 3, 683-692.
|
[10]
|
balakrishnan, k., kumar, m. and angaiah, s. (2014) synthesis of polythiophene and its carbonaceous nanofibers as electrode materials for asymmetric supercapacitors. advanced materials research, 938, 151-157.
|
[11]
|
zhang, l.l. and zhao, x.s. (2009) carbon-based materials as supercapacitor electrodes. chemical society reviews, 38, 2520-2531.
|
[12]
|
张帅杰. 基于木纤维碳功能材料的超级电容器电化学性能研究[d]: [硕士学位论文]. 长沙: 中南林业科技大学, 2024.
|
[13]
|
chen, x., paul, r. and dai, l. (2017) carbon-based supercapacitors for efficient energy storage. national science review, 4, 453-489.
|
[14]
|
高玉双, 段泉滨, 赵程, 等. 双电层材料下的柔性超级电容器电极分析[j]. 科技创新导报, 2019, 16(29): 76-77.
|
[15]
|
程锦. 超级电容器及其电极材料研究进展[j]. 电池工业, 2018, 22(5): 274-279.
|
[16]
|
frackowiak, e. (2007) carbon materials for supercapacitor application. physical chemistry chemical physics, 9, 1774-1785.
|
[17]
|
张哲. 镍基电极材料的制备及超级电容器性能研究[d]: [硕士学位论文]. 济南: 齐鲁工业大学, 2024.
|
[18]
|
sayyed, s.g., mahadik, m.a., shaikh, a.v., jang, j.s. and pathan, h.m. (2019) nano-metal oxide based supercapacitor via electrochemical deposition. es energy & environment, 3, 25-44.
|
[19]
|
董韬文, 张伟, 郑伟涛. 赝电容的起源和本体相赝电容的实现[j]. 硅酸盐学报, 2024, 52(2): 442-453.
|
[20]
|
zhu, q., zhao, d., cheng, m., zhou, j., owusu, k.a., mai, l., et al. (2019) a new view of supercapacitors: integrated supercapacitors. advanced energy materials, 9, article 1901081.
|
[21]
|
he, s., guo, f., yang, q., mi, h., li, j., yang, n., et al. (2021) design and fabrication of hierarchical nicop-mof heterostructure with enhanced pseudocapacitive properties. small, 17, article 2100353.
|
[22]
|
wang, q., luo, y., hou, r., zaman, s., qi, k., liu, h., et al. (2019) redox tuning in crystalline and electronic structure of bimetal-organic frameworks derived cobalt/nickel boride/sulfide for boosted faradaic capacitance. advanced materials, 31, article 1905744.
|
[23]
|
ye, j., zhai, x., chen, l., guo, w., gu, t., shi, y., et al. (2021) oxygen vacancies enriched nickel cobalt based nanoflower cathodes: mechanism and application of the enhanced energy storage. journal of energy chemistry, 62, 252-261.
|
[24]
|
洪广言. 稀土化学导论[j]. 分析化学, 2014, 42(8): 1182.
|
[25]
|
han, d., jing, x., wang, j., yang, p., song, d. and liu, j. (2012) porous lanthanum doped nio microspheres for supercapacitor application. journal of electroanalytical chemistry, 682, 37-44.
|
[26]
|
shao, g., yao, y., zhang, s. and he, p. (2009) supercapacitor characteristic of la-doped ni(oh)2 prepared by electrode-position. rare metals, 28, 132-136.
|
[27]
|
chakrabarty, n., char, m., krishnamurthy, s. and chakraborty, a.k. (2021) influence of la3 induced defects on mno2-carbon nanotube hybrid electrodes for supercapacitors. materials advances, 2, 366-375.
|
[28]
|
zhang, y., zhang, g. and du, t. (2011) development of potassium ferrate(vi) cathode material stabilized with yttria doped zirconia coating for alkaline super-iron battery. electrochimica acta, 56, 1159-1163.
|
[29]
|
zhang, y. and zhai, y. (2016) preparation of y-doped zro2 coatings on mno2 electrodes and their effect on electrochemical performance for mno2 electrochemical supercapacitors. rsc advances, 6, 1750-1759.
|
[30]
|
arunachalam, s., kirubasankar, b., pan, d., liu, h., yan, c., guo, z., et al. (2020) research progress in rare earths and their composites based electrode materials for supercapacitors. green energy & environment, 5, 259-273.
|
[31]
|
yadav, a.a., lokhande, a.c., kim, j.h. and lokhande, c.d. (2016) supercapacitive activities of porous la2o3 symmetric flexible solid-state device by hydrothermal method. international journal of hydrogen energy, 41, 18311-18319.
|
[32]
|
arunachalam, s., kirubasankar, b., murugadoss, v., vellasamy, d. and angaiah, s. (2018) facile synthesis of electrostatically anchored nd(oh)3 nanorods onto graphene nanosheets as a high capacitance electrode material for supercapacitors. new journal of chemistry, 42, 2923-2932.
|
[33]
|
gong, q., li, y., huang, h., zhang, j., gao, t. and zhou, g. (2018) shape-controlled synthesis of ni-ceo2@pani nanocomposites and their synergetic effects on supercapacitors. chemical engineering journal, 344, 290-298.
|
[34]
|
maheswari, n. and muralidharan, g. (2015) supercapacitor behavior of cerium oxide nanoparticles in neutral aqueous electrolytes. energy & fuels, 29, 8246-8253.
|
[35]
|
wang, h., liang, m., zhang, x., duan, d., shi, w., song, y., et al. (2018) novel ceo2 nanorod framework prepared by dealloying for supercapacitors applications. ionics, 24, 2063-2072.
|
[36]
|
asaithambi, s., sakthivel, p., karuppaiah, m., yuvakkumar, r., balamurugan, k., ahamad, t., et al. (2021) preparation of fe-sno2@ceo2 nanocomposite electrode for asymmetric supercapacitor device performance analysis. journal of energy storage, 36, article 102402.
|
[37]
|
wang, x., yan, h., zhang, j., hong, x., yang, s., wang, c., et al. (2019) stamen-petal-like ceo2/nimn layered double hydroxides composite for high-rate-performance supercapacitor. journal of alloys and compounds, 810, article 151911.
|
[38]
|
mazloum-ardakani, m., sabaghian, f., yavari, m., ebady, a. and sahraie, n. (2020) enhance the performance of iron oxide nanoparticles in supercapacitor applications through internal contact of α-fe2o3@ceo2 core-shell. journal of alloys and compounds, 819, article 152949.
|
[39]
|
paravannoor, a., augustine, c.a. and ponpandian, n. (2020) rare earth nanostructures based on pro/cnt composites as potential electrodes for an asymmetric pseudocapacitor cell. journal of rare earths, 38, 625-632.
|
[40]
|
subasri, a., balakrishnan, k., nagarajan, e.r., devadoss, v. and subramania, a. (2018) development of 2d la(oh)3 /graphene nanohybrid by a facile solvothermal reduction process for high-performance supercapacitors. electrochimica acta, 281, 329-337.
|
[41]
|
wang, y., guo, c.x., liu, j., chen, t., yang, h. and li, c.m. (2011) ceo2 nanoparticles/graphene nanocomposite-based high performance supercapacitor. dalton transactions, 40, 6388-6391.
|
[42]
|
luo, y., yang, t., zhao, q. and zhang, m. (2017) ceo2/cnts hybrid with high performance as electrode materials for supercapacitor. journal of alloys and compounds, 729, 64-70.
|
[43]
|
dezfuli, a.s., ganjali, m.r., naderi, h.r. and norouzi, p. (2015) a high performance supercapacitor based on a ceria/graphene nanocomposite synthesized by a facile sonochemical method. rsc advances, 5, 46050-46058.
|
[44]
|
aravinda, l.s., udaya bhat, k. and ramachandra bhat, b. (2013) nano ceo2/activated carbon based composite electrodes for high performance supercapacitor. materials letters, 112, 158-161.
|
[45]
|
padmanathan, n. and selladurai, s. (2014) shape controlled synthesis of ceo2 nanostructures for high performance supercapacitor electrodes. rsc advances, 4, 6527-6534.
|
[46]
|
ji, z., shen, x., zhou, h. and chen, k. (2015) facile synthesis of reduced graphene oxide/ceo2 nanocomposites and their application in supercapacitors. ceramics international, 41, 8710-8716.
|
[47]
|
deng, d., chen, n., xiao, x., du, s. and wang, y. (2016) electrochemical performance of ceo2 nanoparticle-decorated graphene oxide as an electrode material for supercapacitor. ionics, 23, 121-129.
|
[48]
|
naderi, h.r., ganjali, m.r. and dezfuli, a.s. (2017) high-performance supercapacitor based on reduced graphene oxide decorated with europium oxide nanoparticles. journal of materials science: materials in electronics, 29, 3035-3044.
|
[49]
|
patil, s.j., kumbhar, v.s., patil, b.h., bulakhe, r.n. and lokhande, c.d. (2014) chemical synthesis of α-la2s3 thin film as an advanced electrode material for supercapacitor application. journal of alloys and compounds, 611, 191-196.
|
[50]
|
kumbhar, v.s., lokhande, a.c., gaikwad, n.s. and lokhande, c.d. (2015) facile synthesis of sm2s3 diffused nanoflakes and their pseudocapactive behavior. ceramics international, 41, 5758-5764.
|
[51]
|
bibi, n., xia, y., ahmed, s., zhu, y., zhang, s. and iqbal, a. (2018) highly stable mesoporous ceo2/ces2 nanocomposite as electrode material with improved supercapacitor electrochemical performance. ceramics international, 44, 22262-22270.
|