针对头皮亚健康靶向调控策略的探讨-凯发国际一触即发

针对头皮亚健康靶向调控策略的探讨
discussion on targeted regulation strategy of scalp sub-health
doi: , , html, ,   
作者: 梁嘉莹, 胡韫伟, 胡可可, 王致远, 吴建新, 黄 庆*:中国药科大学中药学院,江苏 南京
关键词: ;;;;;;;;;
摘要: 近年来,饱受头皮亚健康状态困扰的人群比例大幅上升,普遍表现为头皮油腻、头屑增多、头皮瘙痒和脱发等头皮问题。这些头皮问题起因复杂,包括内源或外源因素刺激,进而诱导头皮皮脂过度分泌、头皮微生态菌群失调、表皮屏障受损或毛囊小型化。本综述介绍和分析了头皮亚健康状态发生的关键影响因素,从其发生机制出发提出科学地平衡皮脂、调节头皮微生态、修复受损屏障和缓解脱发等多靶点调控头皮健康的干预策略,为今后头皮护理活性原料的开发提供新思路。
abstract: in recent years, the proportion of people suffering from sub-health of the scalp has increased significantly, which is generally manifested as scalp problems such as greasy scalp, increased dandruff, scalp itching and hair loss. the causes of these scalp problems are complex, including endogenous or exogenous factors, which induce hypersecretion of scalp sebum, imbalance of scalp microflora, impairment of epidermal barrier or miniaturization of hair follicles. this review introduced and analyzed the key factors affecting the occurrence of scalp sub-health status, and proposed scientific intervention strategies for scalp health control based on its occurrence mechanism, such as balancing sebum, regulating scalp microecology, repairing damaged barrier and alleviating hair loss, which provided new ideas for the development of scalp nursing active raw materials in the future.
文章引用:梁嘉莹, 胡韫伟, 胡可可, 王致远, 吴建新, 黄庆. 针对头皮亚健康靶向调控策略的探讨[j]. 临床医学进展, 2024, 14(11): 656-666.

1. 引言

头皮具有独特的生理微环境、高强度的神经支配系统、密集的皮脂腺和丰富的血管,且拥有皮肤中最高密度的终末生长期毛囊。毛囊主要由上皮细胞与角质形成细胞组成,其分泌物深入皮下脂肪组织[1]。在正常生理环境下,头皮毛囊间质中存在大量的巨噬细胞和免疫细胞,它们可以感知外源刺激,并通过调节皮脂的产生来调节皮肤微生物群,先天免疫和适应性免疫的激活状态对微生态的改变具有高度反应性[2]。毛囊免疫豁免(immune privilege)是由于毛囊表面有特殊的免疫抑制受体,周围有游离的免疫抑制因子,所以正常情况下免疫细胞不会识别和攻击它[3]。但当毛囊免疫豁免状态失衡时,会导致微生态失调、皮脂腺增生、表皮屏障受损及脱发等头皮亚健康问题,在患者感知自身头皮出现亚健康状态时,应尽早科学的干预和预防慢性疾患的发生,长期不干预会诱导组织炎症的发生,如头皮脂溢性皮炎、毛囊炎和头皮银屑病等[4],加大治疗难度。因此,本文通过分析头皮亚健康状态发生的机制,提出科学平衡头皮皮脂、调节微生态、修复受损屏障和缓解脱发等多靶点调控头皮健康的干预策略来维系健康的头皮生态环境,以期为头皮护理活性原料的开发提供新思路。

2. 头皮亚健康及慢性疾患

2.1. 亚健康头皮

头皮主要由表皮层、真皮层和皮下组织构成,表皮位于最外层,以屏障功能为主,真皮层支撑表皮,拥有丰富的皮脂腺、汗腺和毛囊,皮下组织富含脂肪组织、结缔组织、淋巴组织、血管和神经,主导支撑、供养和防御功能,三者共同保障皮脂膜完整、头皮结构完整和头皮菌群平衡,共建健康的头皮生态。但头皮皮肤较薄,极易受内源和外源性刺激破坏,进而诱导头皮皮脂过度分泌、头皮微生态菌群失调、表皮屏障受损或毛囊小型化。亚健康状态是介于健康与疾病之间的一种过渡状态,由于头皮生态环境稳态失调所引发,头皮健康受损可能导致屏障功能下降、对刺激的易感性增强以及头皮附属物发育障碍[5]。头皮生态环境长期恶性的失衡则会引发头皮疾患,包括脂溢性皮炎、毛囊炎和银屑病等。

2.2. 头皮慢性疾患

常见的头皮慢性疾患包括:头糠疹(capitis pityriasis, cp)、脂溢性皮炎(seborrheic dermatitis, sd)和细菌型毛囊炎(bacterial folliculitis, bf),cp和sd的发生是由于过度繁殖的马拉色菌能够选择性表达酯酶合成基因并将皮脂过氧化,产生不饱和游离脂肪酸等促炎介质[6]和能够分解尿素的脲酶,介导头皮ph升高,促进致病菌的繁殖,并破坏皮肤屏障。bf的发生是由于过量的脂质与异常脱屑的角质细胞聚集于皮脂腺卵泡中,加重毛孔堵塞,厌氧环境促使细菌大量繁殖,其代谢分泌物刺激中性粒细胞产生活性氧(reactive oxygen species, ros),ros通过破坏上皮结构诱发炎症。bf患者头皮上表皮葡萄球菌、金黄色葡萄球菌和痤疮丙酸杆菌等革兰氏阳性球菌丰度增大,所介导的炎症波及皮肤浅表层和皮脂腺密集区域,导致头皮屑增多和头皮囊性包块症状。头部银屑病(psoriasis)属于特殊的头皮疾患,是一种由于t淋巴细胞触发角质细胞异常增殖而介导的皮损,其特征是表皮过度角化、微血管增多和免疫细胞浸润。该病具有很强的遗传易感性和免疫应激性[7]

3. 头皮亚健康的干预策略

头油、头屑、头痒、泛红甚至头发脱落等头皮亚健康状态,是由于内源或外源因素刺激头皮,进而诱导头皮皮脂过度分泌、菌群失调、表皮屏障破坏或毛囊小型化所导致的。内源性刺激包括遗传、免疫力低下、激素紊乱、营养不良和精神压力等,外源性因素包括紫外线、发胶、过度清洁、外伤、牵拉和病原体等[8]。任意一种头皮问题的出现均可能引发头皮生态紊乱,在头皮处于亚健康状态后通过早期科学的干预和综合性修复在一定程度上能够较好实现对头皮生态的恢复,修复头皮生态应当科学地平衡头皮皮脂、调节头皮微生态、修复头皮受损屏障和缓解脱发(图1)。

figure 1. intervention strategy of scalp sub-health state

1. 头皮亚健康的干预策略

3.1. 平衡头皮皮脂

头皮油脂分泌过旺是导致油性头皮和痤疮和脂溢性皮炎等头皮炎症发生的关键病因。皮脂腺细胞释放皮脂包括三个阶段(图2):① 起始阶段:表皮干细胞分化为皮脂细胞;② 活化阶段:皮脂细胞增殖、激活及合成皮脂;③ 释放阶段:皮脂细胞凋亡及脂质释放。cong等[9]发现外源性棕榈酸可以通过激活nf-κb和jnk-akt通路促皮脂细胞炎症,表现为tlr2/4上调,il-6/8增加。aydingoz等[10]发现癌症患者在接受了表皮生长因子受体抑制剂(epidermal growth factor receptor inhibitors, egfri)西妥昔单抗治疗后,头皮出现脓疱糜烂和金色结痂,提示egfri会促皮脂细胞炎症。jiang等[11]发现雄激素刺激成纤维细胞生长因子(fibroblast growth factor-7/10, fgf-7/10)-(fibroblast growth factor receptor-2b, fgfr-2b)-il-1α通路的过表达会诱导皮脂细胞过度增殖。研究发现胰岛素样生长因子-1 (insulin-like growth factor 1, igf-1)是性腺睾酮和肾上腺脱氢表雄酮的有效诱导剂,通过调控雄激素的皮肤利用度和生物活性来增强皮脂腺的活跃度,且igfr的表达能够激活akt-mtorc1通路,促进皮脂细胞生长[12]。雄激素受体(androgen receptor, ar)能够刺激成纤维细胞上调fgf-7/10的表达并增强fgfr2b信号,通过shh通路激活黑皮质素受体5 (recombinant melanocortin 5 receptor, mc5r),参与皮脂细胞分化和脂肪生成[13],而ros或抗雄激素类药物能够靶向p53和b淋巴细胞诱导成熟蛋白(b lymphocyte induced maturation protein 1, blimp1),通过增加blimp1对c-myc (促使细胞获得无限增殖和永生化基因)的抑制作用,从而抑制皮脂细胞分化和皮脂腺脂肪生成[14]。调控表皮脂质的合成与代谢还可以通过调控雷帕霉素复合体1 (mammalian target of rapamycin complex1, mtorc1)来调节血脂生成过程,mtorc1可激活过氧化物酶体增殖物激活受体γ (peroxisome proliferator-activated receptor gamma, pparγ)和甾醇调节元件结合蛋白1c (sterol regulatory element binding protein1c, srebp1c)来促进脂质和蛋白质合成,并抑制分解代谢通路(如自噬和氧化代谢) [15]。其中srebp1c和pparγ通过激活脂肪酸和甘油三酯合成、调控脂肪酸转运和氧化来发挥调节脂质的作用[16]。相反,叉头框转录因子o1 (forkhead box transcription factor o1, foxo1)可以通过抑制ar、pparγ和srebp1c的激活来调节脂质的生成[17]

figure 2. mechanism of sebum release by sebocytes

2. 皮脂细胞释放皮脂的机制

因此,皮脂细胞的增殖受到egfr、igfr、ar、mc5r受体和jnk-akt、shh和p53信号通路的调节,而皮脂细胞分化和脂肪生成受到foxo1、mtorc1、srebp1c和pparγ信号的调节。平衡皮脂分泌异常可以通过调节上述信号或受体表达来治疗。常见的治疗脂溢性皮炎和痤疮用药如异维a酸(isotretinoin)、过氧化苯甲酰(benzoyl peroxide, bpo)和壬二酸(azelaic acid, aza)均能够抑制皮脂细胞生长和脂质的生成。异维a酸可降低血清中igf-1浓度,并介导皮脂细胞程序性死亡[18]。bpo和aza能够介导氧化应激和线粒体损伤,促进ros释放并激活p53,进而抑制mtorc1信号通路传导,抑制皮脂细胞增殖[19]。米诺环素也能够上调p53并灭活akt/mtorc1途径[20]。有代表性的平衡皮脂的活性成分包括表没食子儿茶素-3-没食子酸酯,其通过调节皮脂细胞中的5α-还原酶活性和ampk-srebp-1信号通路来减少皮脂[21]。羽扇豆醇通过调节igr-1r/akt/srebp-1信号通路抑制皮脂细胞的脂肪生成[22]

3.2. 调节头皮微生态

头皮微生态是由宿主皮肤细胞、微生物组及其分泌物共同组成的生态系统。clavaud等[23]发现头皮菌群以痤疮丙酸杆菌(p. acnes)、表皮葡萄球菌(s. epidermidis)和马拉色菌属为主。健康头皮的菌群会相互抑制,维系头皮大健康。如p. acnes释放的游离脂肪酸能够维持表皮弱酸性,阻止病原体的定植,产生的短链脂肪酸能够抑制s. epidermidis生物膜的形成。而s. epidermidis分泌的抗菌肽能够杀死金黄色葡萄球菌(s. aureus),并介导甘油发酵产生琥珀酸来抑制p.acnes的过度繁殖。马拉色菌氧化的皮脂衍生物可以促进s. epidermidis的生长并形成表皮生物膜保护角质屏障。但头皮微生态失调则会诱发头皮泛红和炎症,如脂溢性皮炎、头糠疹、毛囊炎和痤疮(图3)。lin等[24]发现马拉色菌和曲霉菌是脂溢性皮炎的潜在真菌生物标志物,s. epidermidis和假单胞菌是潜在的细菌生物标志物。研究发现马拉色菌过氧化的脂质能够通过dectin-1/syk信号通路级联激活nlrp1炎症小体,导致促炎细胞因子il-1β的释放和宿主细胞因子表达谱的改变[25]s. epidermidis通过表达能够降解紧密连接蛋白桥粒芯胶粘蛋白-1 (desmocollin 1, dsc-1)的特定半胱氨酸蛋白酶来破坏皮肤屏障[26]

figure 3. microecology of healthy scalp and unbalanced scalp

3. 健康头皮和亚健康头皮微生态

因此,通过抑制过度繁殖的致病菌活性或者发挥益生元样作用平衡头皮菌群可以有效调节头皮微生态。目前,脂溢性皮炎治疗用药包括局部应用抗真菌药、皮质类固醇、免疫调节剂和抗炎剂,以及系统性治疗应用伊曲康唑和特比奈芬。酮康唑和二硫化硒是抑真菌剂,通过抑制限制型马拉色菌细胞壁的合成来抑制其生长。主流去屑洗发剂中的吡硫翁锌(zpt)和吡罗克酮乙醇胺盐(oct),能通过有效抑制马拉色菌的生长,从而减少头屑的产生,但zpt因其有致癌风险被欧盟禁用。除抑菌治疗外,通过益生菌干预头皮菌群稳态和维持头皮屏障完整性也颇受关注,益生菌分泌的代谢物能够抑制病原体生物膜的形成,如路邓葡萄球菌(s. lugdunensis)分泌的代谢物可以抑制真菌的过度繁殖[27]。tsai等[28]发现从灭活的戊糖乳杆菌和副干酪乳杆菌中提取的糖脂肽对病原菌具有抗黏附和抑菌活性,并能够通过抑制tgf-β/psmad信号传导来促进伤口愈合。中药活性成分白藜芦醇不仅能够体外抑制致病菌生长,还能够体内调节微生物粘附和糖蛋白表达来刺激乳酸杆菌和双歧杆菌的比例增加,发挥益生元样作用[29]。芦荟素可以通过增加短链脂肪酸和改变细菌组成来改善胃肠道健康,促进双歧杆菌属种群繁殖[30]

3.3. 修复头皮受损屏障

figure 4. mechanisms of scalp barrier damage and repair

4. 头皮屏障受损及修复机制

头皮屏障包括物理屏障、化学屏障、微生物屏障、免疫屏障和渗透屏障。研究发现巨噬细胞在皮肤修复过程中不可或缺,当屏障功能受损时,角质细胞会分泌炎性警报素,刺激单核细胞激活th1和th2细胞因子先后极化成m1型巨噬细胞和m2型巨噬细胞[31]。m1型巨噬细胞能够通过激活jak/stat途径响应适应性免疫应答并消灭致病菌。m2型巨噬细胞分泌的修复因子不仅能够重建细胞外基质(extracellular matrix, ecm)和促角质细胞增殖,还能够分泌血管内皮生长因子(vascular endothelial growth factor, vegf)加速表皮修复[32]。th2还能够激活解析巨噬细胞,该细胞通过表达磷脂酰丝氨酸清除坏死细胞并释放抗炎因子和重塑结缔组织生长因子(cytokine-transforming growth factor, ctgf) [32]。ppar是调控巨噬细胞参与屏障修复各阶段的关键受体。有pparα、pparγ以及pparβ/δ三个亚型。pparα参与炎症早期修复,pparγ调控炎症介导的转录及角质细胞的分化,研究发现敲除pparγ的小鼠体内tnf-α含量上升,表现出缺少颗粒层组织、胶原生成以及伤口愈合延迟[33]。pparβ/δ则通过pi3k/akt通路参与调控角质细胞的增殖、迁移以及黏附。igawa等[34]发现敲除鞘氨醇-1-磷酸受体2 (sphingosine 1-phosphate receptor, s1pr2)的小鼠紧密丝聚蛋白(filaggrin, flg)、连接蛋白(zona occludens 1, zo-1)、兜甲重组蛋白(recombinant loricrin, lor)、闭合蛋白(occludin, ocln)、外膜蛋白(outer membrane proteins, omps)和角化粒素重组蛋白(recombinant corneodesmosin, cdsn)的转录水平均下调,提示s1pr2是维持皮肤屏障的关键蛋白。天然保湿因子(natural moisturing factor, nmf)、游离脂肪酸和葡萄糖基神经酰胺也会参与角质层的水合作用,共同构建表皮天然屏障。许多生长因子如egf、fgf-7、vegf和ctgf对于角质细胞、内皮细胞、成纤维细胞的增殖、迁移、分化,ecm重建和胶原修复均至关重要(图4) [35]

因此,修复头皮屏障可以通过激活pparγ和pparβ/δ通路促m2型巨噬细胞分泌修复因子、增强屏障相关蛋白和促角质细胞增殖及ecm重建的生长因子表达来实现。研究报道燕麦中β-葡聚糖能够激活 ppar-α和ppar-β/δ刺激角质形成细胞分化和神经酰胺合成[36]。槲皮素通过促胶原合成和重建ecm加速表皮修复[37]

3.4. 缓解脱发

脱发涉及毛囊脱落和小型化,分为正常脱发和病理脱发,后者表现为患者头发稀疏。研究人员发现脱发的关键是毛囊周期循环异常[38],头发周期取决于毛囊中各种细胞的健康和功能。毛囊是由多类型细胞组成的小型器官,经历特定的生长周期,包括三个不同的阶段(生长期、退行期和休止期)以维持组织稳态。毛囊的关键细胞包括毛囊干细胞(hair follicle stem cells, hfscs)和真皮乳头细胞(dermal papilla cells, dpcs),它们对头发周期的影响与细胞增殖、细胞存活、细胞周期进程、生长因子、激素、氧化应激、炎症反应、细胞衰老、细胞凋亡以及wnt、hedgehog、jnk、erk、akt、shh、p38、nf-κb、tgf-β、nrf2或bmp等细胞信号通路介导的调节有关。hfscs是位于生态位中原始未分化的细胞,头发再生取决于hfscs的周期性激活。hfscs生态位的破坏和纤维化组织替换都会导致脱发。在永久性瘢痕性脱发中,该生态位的特征是凸起免疫特权的崩溃,隆起周围的hfscs被t细胞和nk细胞浸润攻击,导致hfscs不可逆的丢失[39]。相反,在可逆的非瘢痕性脱发中,例如斑秃(alopecia areata, aa)和雄激素性脱发(androgenetic alopecia, aga),早期炎症通常仅攻击dpcs、表皮细胞或皮脂细胞。dpcs是毛囊生长周期调节中心、信号沟通的“司令部”,可通过旁分泌途径释放信号,控制毛囊的生长、周期变化和诱导毛囊再生。在毛囊生长期,dpcs分泌旁分泌因子,包括vegf、fgf-7和igf-1等促进周围毛囊角质形成细胞、hfscs和dpcs的增殖、迁移和分化。而在aga患者中,dpcs应激刺激和dna损伤标志物增强,细胞出现生长停滞、凋亡抵抗、早期衰老和凋亡信号逐渐增强,生长负性调节因子逐渐增加,如转化生长因子-β1 (transforming growth factor-β1, tgf-β1)、dickkopf相关蛋白1 (dickkopf-related ptotein 1, dkk1)和il-6等,触发毛囊生长期缩短、退行期加速进入和休止期停滞,导致毛囊进行性小型化[40]

美国食品药品监督管理局(fda)批准用于治疗脱发的药物只有米诺地尔、非那雄胺和巴瑞替尼。常用药物米诺地尔和非那雄胺治疗aga的成功率分别为35%和48% [41]。然而,单靶点药物不足以治疗aga,挖掘具有多个治疗靶点的化合物和发现新型脱发治疗的潜在治疗候选者至关重要。筛选脱发治疗的候选药物可以分两种策略:① 探索促进头发生长的药物;缓解脱发可通过激活wnt、akt或shh等信号通路,促进毛囊伸长和增强毛发生长相关基因的表达,如生长期诱导基因(alp、vcan、vegf、fgf-7和igf-1)的表达来延长头发周期的生长期和抑制退行期进入。其中,碱性磷酸酶(alkaline phosphatase, alp)和多功能蛋白聚糖(versican, vcan)是毛囊生长期dpcs标志性升高的基因,成纤维细胞生长因子家族中的fgf-7和fgf-10是诱导毛囊休止期向生长期转变的核心分泌蛋白。② 保护hfscs和dpcs免受诱导脱发的因素干扰,尤其是氧化应激和激素紊乱,激素包括双氢睾酮(dihydrotestosterone, dht)、雌二醇(estradiol, e2)和皮质酮(corticosterone, cort)。dht会选择性地作用于毛囊内的dpcs,诱导衰老并促进dkk1的分泌,从而触发头发退化。氧化应激会诱导hfscs和dpcs等毛囊形成细胞衰老和抗氧化能力失调,促进il-1β、il-6、tnf-α等炎性细胞因子的分泌,抑制氧化损伤保护基因表达,并抑制生长期信号传导,导致头发退化。因此,预防和缓解脱发可以通过调节毛囊生长周期,如延长生长期、延缓退行期过早进入和预防休止期停滞来早期干预。调节毛囊生长周期可以通过维持hfscs干性、促乳酸生成、激活生长信号表达,促hfscs和dpcs细胞增殖、抑制负性介质表达,调控细胞内炎症和应激反应,保护细胞,延缓细胞衰老和改善凋亡来实现(图5)。lee等[42]发现人参皂苷rg4通过激活dpcs中akt/gsk3β/β-catenin信号通路促进毛囊生长。jung等[43]发现花青素能够改善dht介导的毛囊周期延迟、衰老、线粒体功能障碍和毛囊生长抑制因子表达增加。此外,由于jak/stat3通路在介导cd8 t和nkg2d t细胞的激活中起关键作用,tgf-β1是诱导脱发的介质,tgf-β1过表达与jnk通路的过度激活有关[44]。因此,抑制jak似乎是开发脱发疗法的合理靶点。flores等[45]发现防止丙酮酸进入线粒体可以加速头发周期,通过靶向hfscs代谢来调节头发生长可以为治疗脱发提供新策略。乳腺癌易感基因1 (breast cancer 1, brca1)是调节dna修复的关键基因,brca1的失调会导致癌症和衰老。sotiropoulou等[46]发现表皮中缺失brca1会导致hfscs中高水平的dna损伤和细胞死亡。matsumura等[47]发现脱发是由dna损伤诱导的胶原蛋白col17a1水解引起的,因此,col17a1和brca1可能是治疗衰老相关脱发的潜在靶点。靶向sasp的信号通路包括雷帕霉素复合物1 (mtorc1)、jak1/jak2、stat3、nf-κb和p38也是预防脱发的潜在靶点。

figure 5. mechanism of promoting hair growth and shedding

5. 促进毛发生长及脱落机制

4. 讨论

头皮生态稳定会受到皮脂腺活动、头皮微生态、头皮屏障完整度及毛囊健康等多因素的协同调节。正常的皮脂腺活动是保证头皮健康的关键,皮脂腺能够分泌适宜的油脂,形成天然生物膜,滋养头皮和阻隔外界干扰。头皮的微生物组会分泌抗菌肽和激活适应性应答反应,形成天然的生物和免疫屏障,清除病原体并维系头皮大健康。角质层的完整性铸就了天然的头皮物理屏障,能够保障头皮的水分破坏和防御外界刺激损伤头皮。健康毛囊中生长出的毛发具有防护和促进头皮散热功能,不仅能够防止头皮被紫外线过度照射损伤,还能够帮助局部药物传递和输送。但如果出现皮脂腺过度活跃、致病菌过度繁殖、头皮屏障受损或毛囊小型化等破坏头皮健康稳态问题时,会触发头皮炎症和应激反应。患者突出表现为头发油腻、头屑增多、头皮瘙痒和脱发等头皮问题,长期恶性的失衡则会引发头皮疾患,包括脂溢性皮炎、毛囊炎和银屑病等,治疗会更加复杂。因此,当患者感知自身头皮可能已经处于亚健康状态时应当尽早通过科学的预防或干预治疗,本文提出通过科学地平衡头皮皮脂、调节头皮微生态、修复头皮受损屏障和缓解脱发等多靶点调控头皮健康的干预策略来维系健康的头皮微环境和预防头皮慢性疾病进行性发展,为多靶点头皮护理活性原料的开发提供可能的方向。

notes

*通讯作者。

参考文献

[1] polak‐witka, k., rudnicka, l., blume‐peytavi, u. and vogt, a. (2019) the role of the microbiome in scalp hair follicle biology and disease. experimental dermatology, 29, 286-294.
[2] kumari, k.u., yadav, n.p. and luqman, s. (2022) promising essential oils/plant extracts in the prevention and treatment of dandruff pathogenesis. current topics in medicinal chemistry, 22, 1104-1133.
[3] islam, n., leung, p.s.c., huntley, a.c. and eric gershwin, m. (2015) the autoimmune basis of alopecia areata: a comprehensive review. autoimmunity reviews, 14, 81-89.
[4] barbosa, v., hight, r. and grullon, k. (2023) scalp infection, inflammation, and infestation. dermatologic clinics, 41, 539-545.
[5] fung, e.s., parker, j.a. and monnot, a.d. (2023) evaluating the impact of hair care product exposure on hair follicle and scalp health. alternatives to laboratory animals, 51, 323-334.
[6] sheth, u. and dande, p. (2020) pityriasis capitis: causes, pathophysiology, current modalities, and future approach. journal of cosmetic dermatology, 20, 35-47.
[7] hazarika, n. (2019) acne vulgaris: new evidence in pathogenesis and future modalities of treatment. journal of dermatological treatment, 32, 277-285.
[8] t. chiu, c., huang, s. and wang, h. (2015) a review: hair health, concerns of shampoo ingredients and scalp nourishing treatments. current pharmaceutical biotechnology, 16, 1045-1052.
[9] cong, t., hao, d., wen, x., li, x., he, g. and jiang, x. (2019) from pathogenesis of acne vulgaris to anti-acne agents. archives of dermatological research, 311, 337-349.
[10] aydingoz, i.e., tukenmez demirci, g., agirbasli, d., oz‐arslan, d. and yenmis, g. (2020) the investigation of the amounts and expressions of epidermal growth factor, epidermal growth factor receptor, and epidermal growth factor receptor gene polymorphisms in acne vulgaris. journal of cosmetic dermatology, 20, 346-351.
[11] jiang, t., hu, w., zhang, s., ren, c., lin, s., zhou, z., et al. (2022) fibroblast growth factor 10 attenuates chronic obstructive pulmonary disease by protecting against glycocalyx impairment and endothelial apoptosis. respiratory research, 23, article no. 269.
[12] song, w., wang, l., wang, l. and li, q. (2015) interplay of mir-21 and foxo1 modulates growth of pancreatic ductal adenocarcinoma. tumor biology, 36, 4741-4745.
[13] su, z., zhang, y., cao, j., sun, y., cai, y., zhang, b., et al. (2023) hyaluronic acid-fgf2-derived peptide bioconjugates for suppression of fgfr2 and ar simultaneously as an acne antagonist. journal of nanobiotechnology, 21, article no. 55.
[14] agamia, n.f., el mulla, k.f., alsayed, n.m., ghazala, r.m., el maksoud, r.e.a., abdelmeniem, i.m., et al. (2022) isotretinoin treatment upregulates the expression of p53 in the skin and sebaceous glands of patients with acne vulgaris. archives of dermatological research, 315, 1355-1365.
[15] gosis, b.s., wada, s., thorsheim, c., li, k., jung, s., rhoades, j.h., et al. (2022) inhibition of nonalcoholic fatty liver disease in mice by selective inhibition of mtorc1. science, 376, article no. 8271.
[16] lee, j., kang, h.s., park, h.y., moon, y., kang, y.n., oh, b., et al. (2017) pparα-dependent insig2a overexpression inhibits srebp-1c processing during fasting. scientific reports, 7, article no. 9958.
[17] chen, j., lu, y., tian, m. and huang, q. (2019) molecular mechanisms of foxo1 in adipocyte differentiation. journal of molecular endocrinology, 62, r239-r253.
[18] agamia, n.f., roshdy, o.h., abdelmaksoud, r.e., abdalla, d.m., talaat, i.m., zaki, e.i., et al. (2018) effect of oral isotretinoin on the nucleo‐cytoplasmic distribution of foxo1 and foxo3 proteins in sebaceous glands of patients with acne vulgaris. experimental dermatology, 27, 1344-1351.
[19] li, l., lu, h., zhang, y., li, q., shi, s. and liu, y. (2022) effect of azelaic acid on psoriasis progression investigated based on phosphatidylinositol 3-kinase (pi3k)/protein kinase b (akt) signaling pathway. clinical, cosmetic and investigational dermatology, 15, 2523-2534.
[20] melnik, b.c. (2017) p53: key conductor of all anti-acne therapies. journal of translational medicine, 15, article no. 195.
[21] yoon, j.y., kwon, h.h., min, s.u., thiboutot, d.m. and suh, d.h. (2013) epigallocatechin-3-gallate improves acne in humans by modulating intracellular molecular targets and inhibiting p. acnes. journal of investigative dermatology, 133, 429-440.
[22] kwon, h.h., yoon, j.y., park, s.y., min, s., kim, y., park, j.y., et al. (2015) activity-guided purification identifies lupeol, a pentacyclic triterpene, as a therapeutic agent multiple pathogenic factors of acne. journal of investigative dermatology, 135, 1491-1500.
[23] clavaud, c., jourdain, r., bar-hen, a., tichit, m., bouchier, c., pouradier, f., et al. (2013) dandruff is associated with disequilibrium in the proportion of the major bacterial and fungal populations colonizing the scalp. plos one, 8, e58203.
[24] lin, q., panchamukhi, a., li, p., shan, w., zhou, h., hou, l., et al. (2020) malassezia and staphylococcus dominate scalp microbiome for seborrheic dermatitis. bioprocess and biosystems engineering, 44, 965-975.
[25] liang, n., yang, y., li, w., wu, y., zhang, z., luo, y., et al. (2017) overexpression of nlrp3, nlrc4 and aim2 inflammasomes and their priming‐associated molecules (tlr2, tlr4, dectin‐1, dectin‐2 and nf-κb) in malassezia folliculitis. mycoses, 61, 111-118.
[26] ortega-peña, s., martínez-garcía, s., rodríguez-martínez, s., cancino-diaz, m.e. and cancino-diaz, j.c. (2019) overview of staphylococcus epidermidis cell wall-anchored proteins: potential targets to inhibit biofilm formation. molecular biology reports, 47, 771-784.
[27] zipperer, a., konnerth, m.c., laux, c., berscheid, a., janek, d., weidenmaier, c., et al. (2016) human commensals producing a novel antibiotic impair pathogen colonization. nature, 535, 511-516.
[28] tsai, w., fang, y., huang, t., chiang, y., lin, c. and chang, w. (2023) heat-killed lacticaseibacillus paracasei gmnl-653 ameliorates human scalp health by regulating scalp microbiome. bmc microbiology, 23, article no. 121.
[29] catinean, a., neag, m.a., muntean, d.m., bocsan, i.c. and buzoianu, a.d. (2018) an overview on the interplay between nutraceuticals and gut microbiota. peerj, 6, e4465.
[30] dimidi, e. and whelan, k. (2020) food supplements and diet as treatment options in irritable bowel syndrome. neurogastroenterology & motility, 32, e13951.
[31] zhang, b., luo, p., sun, j., li, d., liu, z., liu, x., et al. (2022) the epidermal barrier structure and function of re-harvested skin from non-scalp donor sites. journal of investigative surgery, 36, 1-7.
[32] runtsch, m.c., angiari, s., hooftman, a., wadhwa, r., zhang, y., zheng, y., et al. (2022) itaconate and itaconate derivatives target jak1 to suppress alternative activation of macrophages. cell metabolism, 34, 487-501.e8.
[33] konger, r.l., derr-yellin, e., zimmers, t.a., katona, t., xuei, x., liu, y., et al. (2021) epidermal pparγ is a key homeostatic regulator of cutaneous inflammation and barrier function in mouse skin. international journal of molecular sciences, 22, article no. 8634.
[34] igawa, s., ohzono, a., pham, p., wang, z., nakatsuji, t., dokoshi, t., et al. (2021) sphingosine 1-phosphate receptor 2 is central to maintaining epidermal barrier homeostasis. journal of investigative dermatology, 141, 1188-1197.e5.
[35] inchingolo, a.d., malcangi, g., inchingolo, a.m., piras, f., settanni, v., garofoli, g., et al. (2022) benefits and implications of resveratrol supplementation on microbiota modulations: a systematic review of the literature. international journal of molecular sciences, 23, article no. 4027.
[36] jing, r., fu, m., huang, y., zhang, k., ye, j., gong, f., et al. (2024) oat β‐glucan repairs the epidermal barrier by upregulating the levels of epidermal differentiation, cell-cell junctions and lipids via dectin‐1. british journal of pharmacology, 181, 1596-1613.
[37] chen, t., zhang, x., zhu, g., liu, h., chen, j., wang, y., et al. (2020) quercetin inhibits tnf-α induced huvecs apoptosis and inflammation via downregulating nf-κb and ap-1 signaling pathway in vitro. medicine, 99, e22241.
[38] goryachkina, v.l., ivanova, m.y., tsomartova, d.a., et al. (2014) regulation of hair follicle cycle. morfologiia, 146, 83-87.
[39] ito, t., ito, n., saatoff, m., hashizume, h., fukamizu, h., nickoloff, b.j., et al. (2008) maintenance of hair follicle immune privilege is linked to prevention of nk cell attack. journal of investigative dermatology, 128, 1196-1206.
[40] zhou, l., wang, h., jing, j., yu, l., wu, x. and lu, z. (2018) regulation of hair follicle development by exosomes derived from dermal papilla cells. biochemical and biophysical research communications, 500, 325-332.
[41] gupta, a.k., talukder, m. and williams, g. (2022) comparison of oral minoxidil, finasteride, and dutasteride for treating androgenetic alopecia. journal of dermatological treatment, 33, 2946-2962.
[42] lee, y.h., choi, h., kim, j.y., kim, j., lee, j., cho, s., et al. (2021) ginsenoside rg4 enhances the inductive effects of human dermal papilla spheres on hair growth via the akt/gsk-3β/β-catenin signaling pathway. journal of microbiology and biotechnology, 31, 933-941.
[43] jung, y.h., chae, c.w., choi, g.e., shin, h.c., lim, j.r., chang, h.s., et al. (2022) cyanidin 3-o-arabinoside suppresses dht-induced dermal papilla cell senescence by modulating p38-dependent er-mitochondria contacts. journal of biomedical science, 29, article no. 17.
[44] hibino, t. and nishiyama, t. (2004) role of tgf-beta2 in the human hair cycle. journal of dermatological science, 35, 9-18.
[45] flores, a., schell, j., krall, a.s., jelinek, d., miranda, m., grigorian, m., et al. (2017) lactate dehydrogenase activity drives hair follicle stem cell activation. nature cell biology, 19, 1017-1026.
[46] sotiropoulou, p.a., karambelas, a.e., debaugnies, m., candi, a., bouwman, p., moers, v., et al. (2012) brca1 deficiency in skin epidermis leads to selective loss of hair follicle stem cells and their progeny. genes & development, 27, 39-51.
[47] matsumura, h., mohri, y., binh, n.t., morinaga, h., fukuda, m., ito, m., et al. (2016) hair follicle aging is driven by transepidermal elimination of stem cells via col17a1 proteolysis. science, 351, 559-600.
为你推荐
凯发国际一触即发的友情链接
网站地图